Abstract
An analysis of the dependence known three dimensional structure ofglobular proteins on their residue contacts and their interactions providesmuch information about their folding and stability. In this work, we analysethe residue-residue contacts and the role of medium and long rangeinteractions in globular proteins belonging to different structural classes.The results show that while medium range interactions predominate in allalpha class proteins, long range interactions predominate in all beta class.The residues Pro and Gly are found to have lowest medium range contacts,probably due to their helix breaking tendency. The hydrophobic residues Ile,Val and Tyr have higher long range contacts, and hence may serve as goodnucleation centres. Further, the role of charged residues and disulfidebridges in these interactions are also discussed.
Keywords: Globular proteins, Interactions, Residue contacts, Structural class, Tertiary structure
Full Text
The Full Text of this article is available as a PDF (92.0 KB).
References
- 1.Nagano K., Ponnuswamy P.K. Adv. Biophys. 1984;18:115–148. doi: 10.1016/0065-227x(84)90009-1. [DOI] [PubMed] [Google Scholar]
- 2.Barlow D.J., Thornton J.M. Biopolymers. 1986;25:1717–1733. doi: 10.1002/bip.360250913. [DOI] [PubMed] [Google Scholar]
- 3.MacArthur M.W., Thornton J.M. J. Mol. Biol. 1991;218:397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
- 4.Karpeisky M., Ilyin V.A. J. Mol. Biol. 1992;224:629–638. doi: 10.1016/0022-2836(92)90549-y. [DOI] [PubMed] [Google Scholar]
- 5.Zhu B-Y., Zhou N.E., Kay C.M., Hodges R.S. Protein Sci. 1993;2:383–394. doi: 10.1002/pro.5560020310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Vtyurin N. Proteins. 1993;15:62–70. doi: 10.1002/prot.340150108. [DOI] [PubMed] [Google Scholar]
- 7.Ponnuswamy P.K., Gromiha M.M. J. Theor. Biol. 1994;166:63–74. doi: 10.1006/jtbi.1994.1163. [DOI] [PubMed] [Google Scholar]
- 8.Gobel U., Sander C., Schneider R., Valencia A. Proteins. 1994;18:309–317. doi: 10.1002/prot.340180402. [DOI] [PubMed] [Google Scholar]
- 9.Tanaka S., Scheraga H.A. Macromolecules. 1976;9:945–950. doi: 10.1021/ma60054a013. [DOI] [PubMed] [Google Scholar]
- 10.Manavalan P., Ponnuswamy P.K. Arch. Biochem. Biophys. 1977;184:476–487. doi: 10.1016/0003-9861(77)90457-x. [DOI] [PubMed] [Google Scholar]
- 11.Warme P.K., Morgan R.S. J. Mol. Biol. 1978;118:289–304. doi: 10.1016/0022-2836(78)90229-2. [DOI] [PubMed] [Google Scholar]
- 12.Narayana S.V.L., Argos P. Int. J. Peptide Protein Res. 1984;24:25–39. doi: 10.1111/j.1399-3011.1984.tb00924.x. [DOI] [PubMed] [Google Scholar]
- 13.Viswanathan V.N. Int. J. Biol. Macromol. 1987;9:39–48. [Google Scholar]
- 14.Miyazawa S., Jernigan R.L. Macromolecules. 1985;18:534–552. [Google Scholar]
- 15.Burlety S.K., Petsko G.A. Science. 1985;229:23–29. doi: 10.1126/science.3892686. [DOI] [PubMed] [Google Scholar]
- 16.Burtley S.K., Petsko G.A. Adv. Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
- 17.Heringa J., Argos P. J. Mol. Biol. 1991;220:151–171. doi: 10.1016/0022-2836(91)90388-m. [DOI] [PubMed] [Google Scholar]
- 18.Magalhaes A., Margret B., Hoflack J., Gomes J.N., Scheraga H.A. J. Protein Chem. 1994;13:195–215. doi: 10.1007/BF01891978. [DOI] [PubMed] [Google Scholar]
- 19.Muthusamy R., Ponnuswamy P.K. J. Theor. Biol. 1991;153:25–40. doi: 10.1016/s0022-5193(05)80351-0. [DOI] [PubMed] [Google Scholar]
- 20.Karlin S., Zucker M., Brocchieri L. J. Mol. Biol. 1994;239:227–248. doi: 10.1006/jmbi.1994.1365. [DOI] [PubMed] [Google Scholar]
- 21.Tanaka S., Scheraga H.A. Proc. Natl. Acad. Sci. 1975;72:3802–3806. doi: 10.1073/pnas.72.10.3802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Ponnuswamy P.K., Warme P.K., Scheraga H.A. Proc. Natl. Acad. Sci. USA. 1973;70:830–833. doi: 10.1073/pnas.70.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Allewell N. Trends. Biochem. Sci. 1991;16:239–240. doi: 10.1016/0968-0004(91)90094-c. [DOI] [PubMed] [Google Scholar]
- 24.Tudos E., Fiser A., Simon I. Int. J. Peptide Protein Res. 1994;43:205–208. doi: 10.1111/j.1399-3011.1994.tb00524.x. [DOI] [PubMed] [Google Scholar]
- 25.Bernstein F.C., Koetzle T.F., Williams G.J.B., Meyer E.F., Jr, Brice M.O., Rodgers J. ., Kennard O., Shimanouchi T., Tasumi M. J. Mol. Biol. 1977;112:535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- 26.Manavalan P., Ponnuswamy P.K. Nature. 1978;275:673–674. doi: 10.1038/275673a0. [DOI] [PubMed] [Google Scholar]
- 27.Ponnuswamy P.K., Prabakaran M., Manavalan P. Biochim. Biophys. Acta. 1980;623:301–316. doi: 10.1016/0005-2795(80)90258-5. [DOI] [PubMed] [Google Scholar]
- 28.Shin Y.A., Yoo S.E. Biopolymers. 1996;38:183–190. doi: 10.1002/(SICI)1097-0282(199602)38:2%3C183::AID-BIP5%3E3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- 29.Fasman G.D. In: Prediction of Protein Structure and Principles of Protein Conformation. Fasman G.D., editor. New York: Plenum Press; 1989. pp. 193–316. [Google Scholar]
- 30.Gromiha M.M., Ponnuswamy P.K. Int. J. Peptide Protein Res. 1995;45:225–240. doi: 10.1111/j.1399-3011.1995.tb01484.x. [DOI] [PubMed] [Google Scholar]
- 31.Levin J.M., Garnier J. Biochim. Biophys. Acta. 1988;955:283–295. doi: 10.1016/0167-4838(88)90206-3. [DOI] [PubMed] [Google Scholar]
- 32.Rost B., Schneider R., Sander C. Trends. Biochem. Sci. 1993;18:120–123. doi: 10.1016/0968-0004(93)90017-h. [DOI] [PubMed] [Google Scholar]
- 33.Thornton J.M. J. Mol. Biol. 1981;151:261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
- 34.Matthews B.W. Ann. Rev. Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
- 35.Barlow D.J., Thornton J.M. J. Mol. Biol. 1983;168:867–885. doi: 10.1016/s0022-2836(83)80079-5. [DOI] [PubMed] [Google Scholar]