Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 1997 Sep;23(3):163–170. doi: 10.1023/A:1004939118378

Boltzmann Entropy: Generalization and Applications

CG Chakrabarti 1, Kajal De 2
PMCID: PMC3456392  PMID: 23345658

Abstract

The object of the paper is to generalize Boltzmann entropy to takeaccount of the subjective nature of a system. The generalized entropyor relative entropy so obtained has been applied to an ecologicalsystem leading to some interesting new results in violation ofexisting physical laws. The entropy was further developed to derive ageneralized macroscopic measure of relative entropy which plays asignificant role in the study of stability and evolution ofecological and chemical reaction systems.

Keywords: Boltzmann entropy, Subjectivity, Relative entropy, Equipartition law, Statistical Equilibrium, Ecological systems

Full Text

The Full Text of this article is available as a PDF (70.2 KB).

References

  • 1.Wehrl A. General properties of entropy. Rev. Mod. Phys. 1978;50:221–259. [Google Scholar]
  • 2.Penrose O. Foundations of statistical mechanics. Oxford: Pergamon Press; 1970. [Google Scholar]
  • 3.Chakrabarti, C. G. and De, Kajal: Boltzmann-Gibbs entropy: Axiomatic characterization (communicated).
  • 4.Jaynes E. T. Information theory and statistical mechanics. Phys. Rev. 1957;106:620–630. [Google Scholar]
  • 5.Lavenda B. H. Statistical physics: A probabilistic approach. New York: Wiley and Sons; 1990. [Google Scholar]
  • 6.Kullback S. Information theory and statistics. New York: Wiley and Sons; 1959. [Google Scholar]
  • 7.Jumarie G. Relative information: Theory and application. Berlin: Springer-Verlag; 1990. [Google Scholar]
  • 8.Landsberg P. T. Is equilibrium always a entropy maximum? J. Stat. Phys. 1984;35:159–169. [Google Scholar]
  • 9.Auger A. Dynamics and thermodynamics of hierarchically organized systems. Oxford: Pergamon Press; 1989. [Google Scholar]
  • 10.Rumer B. Y., Ryvkin M. S. Thermodynamics, statistical physics and kinetics. Moscow: Mir Publication; 1980. [Google Scholar]
  • 11.Chakrabarti, C. G.: Statistical inference and quantum statistics, Rev. Bull. Cal. Math. Soc.2 (1994), 39–47. (Proc. S. N. Bose Birth Centenary International Symposium on Statistical Physics, Ed. C. G. Chakrabarti).
  • 12.Skilling J., editor. Maximum entropy and Bayesian methods. Dordrecht: Kluwer Academic Publishers; 1989. [Google Scholar]
  • 13.Takeuchi Y. Global dynamical properties of Lotka-Volterra systems. Singapore: World Scientific; 1996. [Google Scholar]
  • 14.Ishida K., Matsumoto S. Non-equilibrium thermodynamics of temporally oscillating chemical reactions. J. Theort. Biol. 1975;52:343–363. doi: 10.1016/0022-5193(75)90006-5. [DOI] [PubMed] [Google Scholar]
  • 15.Chakrabarti C. G., Ghosh S., Bhadra S. Non-equilibrium thermodynamics of Lotka-Volterra ecosystems: Stability and evolution. J. Biol. Phys. 1995;21:273–284. [Google Scholar]
  • 16.Chakrabarti C. G., Ghosh S. Entropic model and analysis of complex systems. SAMS. 1996;23:103–111. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES