Abstract
Vibrations in microtubules and actin filaments are analysed using amethod similar to that employed for description of lattice vibrationsin solid state physics. The derived dispersion relations show thatvibrations in microtubules can have optical and acoustical branches.The highest frequency of vibrations in microtubules and in actinfilaments is of the order of 108 Hz. Vibrations are polar andinteraction with surroundings is mediated by the generatedelectromagnetic field. Supply of energy from hydrolysis of guanosinetriphosphate (GTP) in microtubules and of adenosine triphosphate(ATP) in actin filaments may excite the vibrations.
Keywords: Vibrations in microtubules, Vibrations in actin filaments, Microtubule translation symmetry, Dispersion relation, Energy supply to cyto-skeleton, Hydrolysis of GTP, Hydrolysis of ATP, Fröhlich's condensation in cytoskeleton, Nonlinearity in cytoskeleton
Full Text
The Full Text of this article is available as a PDF (85.3 KB).
References
- 1.Mandelkow E., Mandelkow E.-M., Hotani H., Hess B., Müller S.C. Spatial Patterns from Oscillating Microtubules. Science. 1989;246:1291–1293. doi: 10.1126/science.2588005. [DOI] [PubMed] [Google Scholar]
- 2.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. York & London: Garland Publishing; 1994. [Google Scholar]
- 3.Satarić M. V., Tuszyński J.A., Hameroff S., Zakula R.B. Microtubules and Their Role in Neuromolecular Computing. Neural Network World. 1994;4:281–294. [Google Scholar]
- 4.Tuszyński J.A., Hameroff S., Satarić M.V., Trpisová B., Nip M.L.A. Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly. J. theor. Biol. 1995;174:371–380. [Google Scholar]
- 5.Tuszyński J.A., Trpisová B., Sept D. From Erratic to Coherent Behaviour in the Assembly of Microtubules. Neural Network World. 1995;5:675–688. [Google Scholar]
- 6.Caplow M., Ruhlen R.L., Shanks J. The Free Energy for Hydrolysis of a Microtubule-Bound Nucleotide Triphosphate Is Near Zero: All of the Free Energy for Hydrolysis Is Stored in the Microtubule Lattice. J. Cell Biol. 1994;127:779–788. doi: 10.1083/jcb.127.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Dekker J.A. Solid State Physics. Englewood Cliffs: Prentice-Hall; 1957. [Google Scholar]
- 8.Käs J., Strey H., Tang J.X., Finger D., Ezzell R., Sackmann E., Janmey P.A. F-Actin, a Model Polymer for Semiflexible Chains in Dilute, Semidilute, and Liquid Crystalline Solutions. Biophys. J. 1996;70:609–625. doi: 10.1016/S0006-3495(96)79630-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Sato M., Schwartz W.H., Selden S., Pollard T.D. Mechanical Properties of Brain Tubulin and Microtubules. J. Cell Biol. 1988;106:1205–1211. doi: 10.1083/jcb.106.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Janmey P.A., Euteneuer U., Traub P., Schliwa M. Viscoelastic Properties of Vimentin Compared with Other Filamentous Biopolymer Networks. J. Cell Biol. 1991;113:155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Leterrier J.F., Käs J., Hartwig J., Vegners R., Janmey P.A. Mechanical Effects of Neuro-filament Cross-bridges. The J. Biol. Chem. 1996;271:15687–15694. doi: 10.1074/jbc.271.26.15687. [DOI] [PubMed] [Google Scholar]
- 12.Janmey P.A. Coping with Cellular Stress: The Mechanical Resistance of Porous Protein Networks. Biophys. J. 1996;71:3–7. doi: 10.1016/S0006-3495(96)79201-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.MacKintosh F.C., Käs J., Janmey P.A. Elasticity of Semiflexible Biopolymer Networks. Phys. Rev. Lett. 1995;75:4425–4428. doi: 10.1103/PhysRevLett.75.4425. [DOI] [PubMed] [Google Scholar]
- 14.Caplow M., Shanks J. Induction of Microtubule Catastrophe by Formation of Tubulin–GDP and Apotubulin Subunits at Microtubule Ends. Biochemistry. 1995;34:15732–15741. doi: 10.1021/bi00048a018. [DOI] [PubMed] [Google Scholar]
- 15.Caplow M., Shanks J. Evidence that a Single Monolayer Tubulin–GTP Cap Is Both Necessary and Sufficient to Stabilize Microtubules. Molec. Biol. Cell. 1996;7:663–675. doi: 10.1091/mbc.7.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Satarić M.V., Tuszyński J.A., Žakula R.B. Kinklike excitations as an energy-transfer mechanism in microtubules. Phys. Rev. E. 1993;48:589–597. doi: 10.1103/physreve.48.589. [DOI] [PubMed] [Google Scholar]
- 17.Fröhlich H. Bose Condensation of Strongly Excited Longitudinal Electric Modes. Phys. Lett. 1968;26A:402–403. [Google Scholar]
- 18.Fröhlich H. Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 1968;II:641–649. [Google Scholar]
- 19.Fröhlich H. The Biological Effects of Microwaves and Related Questions. Advances in Electronics and Electron Phys. 1980;53:85–152. [Google Scholar]