Abstract
Hemodynamics have long been implicated in atherogenesis. The studiesreported here seek to explain the mechanisms for the formation ofatherosclerotic plaque in an aortic bifurcation. Flow studies were made ina model constructed from plexiglass to represent an aortic bifurcation. Under steady flow conditions at inflow Reynolds numbers of 80–1250,the streamline flow patterns and the boundary layer separation zones wereinvestigated in relation to the location of atherosclerotic plaques clinicallyfound at regions in the human aortic bifurcation. The streamline flowswere visualized by a slow injection of dye over the cross section of the tubeentrance and along the tube walls. The studies revealed a complex flowfield where secondary flows, induced by the centrifugal and viscous forces,cause the fluid to move towards the inner walls of the aortic bifurcation. The effect was more clearly seen with increasing Reynolds number. Boundary layer separation zones were observed to occur at the outercorners of the branching. The nature of the separation zone formed wasfound to be dependent on Reynolds number. The residence time of fluidparticles within such a separation zone was estimated by measuring thewashout time of a bolus of dye injected at strategic locations along the tubewalls. The residence time was found to decrease exponentially withincreasing Reynolds number. These observations provide strong support forthe role of flow separation in the accumulation of LDL and plateletaggregation within the aortic bifurcation.
Keywords: Aortic bifurcation, atherosclerosis, steady flow, separation zone, secondary flow, residence time
Full Text
The Full Text of this article is available as a PDF (295.9 KB).
References
- 1.Barakat A.I., Karino T., Colton C.K. Microcinematographic Studies of Flow Patterns in the Excised Rabbit Aorta and Its Major Branches. Biorheology. 1997;34(3):195–221. doi: 10.1016/S0006-355X(97)00025-5. [DOI] [PubMed] [Google Scholar]
- 2.Batten J.R., Nerem R.M. Model Study of Flow in Curved and Planar Arterial Bifurcations. Card. Res. 1982;16:178–186. doi: 10.1093/cvr/16.4.178. [DOI] [PubMed] [Google Scholar]
- 3.Bharadvaj B.K., Mabon D.P., Giddens Steady Flow in a Model of the Human Carotid Bifurcation. Part I-Flow visualization. J. Biomech. 1982;15(5):349–362. doi: 10.1016/0021-9290(82)90057-4. [DOI] [PubMed] [Google Scholar]
- 4.Burton A.C.:. Physiology and Biophysics of the Circulation. 2nd edn. Chicago: Yearbook Medical Publishers Incorporated; 1972. [Google Scholar]
- 5.Caro C.G., Fitz-Gerald J.M., Schroter R.C. Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis. Proc. Roy. Soc. London. 1971;177:109–159. doi: 10.1098/rspb.1971.0019. [DOI] [PubMed] [Google Scholar]
- 6.Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. The Mechanics of the Circulation. Oxford: Oxford University Press; 1978. [Google Scholar]
- 7.Cornhill F.J., Roach M.R. A Quantitative Study of the Localization of Atherosclerotic Lesions in the Rabbit Aorta. Atherosclerosis. 1976;23:489–501. doi: 10.1016/0021-9150(76)90009-5. [DOI] [PubMed] [Google Scholar]
- 8.Delfino A., Stergiopulos N., Moore J.E., Meister J.J. Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation. J Biomech. 1997;30(8):777–786. doi: 10.1016/s0021-9290(97)00025-0. [DOI] [PubMed] [Google Scholar]
- 9.Deng X., King M., Guidoin R. Localization of Atherosclerosis in Arterial Branches: Modeling the Release Rate of Low Lipoprotein and Its Breakdown Products Accumulated in Blood Vessel Walls. ASAIO Journal. 1993;39:M489–M495. [PubMed] [Google Scholar]
- 10.El Masry O.A., Feuerstein I.A., Round G.F. Experimental Evaluation of Streamline Patterns and Separation Flows in a Series of Branching Vessels with Implications for Atherosclerosis and Thrombosis. Circ. Res. 1978;43:608–618. doi: 10.1161/01.res.43.4.608. [DOI] [PubMed] [Google Scholar]
- 11.Endo S., Sohara Y., Karino T. Flow Patterns in Dog Aortic Arch under a Steady Flow Condition Simulating Mid-Systole. Heart and Vessels. 1996;11:180–191. doi: 10.1007/BF02559990. [DOI] [PubMed] [Google Scholar]
- 12.Fox J.A., Hugh A.E. Localization of Atheroma. A Theory Based on Boundary Layer Aeparation. Br. Heart J. 1966;28:388–399. doi: 10.1136/hrt.28.3.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Friedman M.H., O'Brien V., Ehrlid L.W. Calculations of Pulstile Flow Through a Branch Implications for the Hemodinamics of Atherogenesis. Circ. Res. 1975;36:277–284. doi: 10.1161/01.res.36.2.277. [DOI] [PubMed] [Google Scholar]
- 14.Fry D.L. Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients. Circ. Res. 1968;22:165–197. doi: 10.1161/01.res.22.2.165. [DOI] [PubMed] [Google Scholar]
- 15.Gear A.R.L. Platelet Adhesion, Shape Change and Aggregation: Rapid Initiation and Signal Transduction Events. Canad. J. Physiol. Pharmacol. 1993;72:285–294. doi: 10.1139/y94-044. [DOI] [PubMed] [Google Scholar]
- 16.Hegele R.A. The Pathogenesis of Atherosclerosis. Clinica Chimica Acta. 1996;246:21–38. doi: 10.1016/0009-8981(96)06224-9. [DOI] [PubMed] [Google Scholar]
- 17.Laitinen M., Yla H.S. Vascular Gene Transfer for the Treatment of Restenosis and Atherosclerosis. Cur. Opin. Lipidol. 1998;95:465–469. doi: 10.1097/00041433-199810000-00011. [DOI] [PubMed] [Google Scholar]
- 18.Langille B.L., Adamson S.L. Relationship Between Blood Flow Direction and Endothelial Cell Orientation at Arterial Branch Sites in Rabbits and Mice. Circ. Res. 1981;48:481–488. doi: 10.1161/01.res.48.4.481. [DOI] [PubMed] [Google Scholar]
- 19.Lim K.O., Kennedy J.S., Rodkiewicz C.M. Entry Flow in a Circular Tube of Aortic Arch Dimensions. J. Biomech. 1984;106:351–365. doi: 10.1115/1.3138504. [DOI] [PubMed] [Google Scholar]
- 20.Lou Z., Yang W.J. Biofluid Dynamics at Arterial Bifurcations. Critical Reviews in Biomedical Engineering. 1992;19(6):455–493. [PubMed] [Google Scholar]
- 21.Lutz R.J., Cannon J.N., Bischoff K.B., Dedrick R.L., Stiles R.K., Fry D.L. Wall Shear Stress Distribution in a Model Canine Artery During Steady Flow. Circ. Res. 1975;41:391–399. doi: 10.1161/01.res.41.3.391. [DOI] [PubMed] [Google Scholar]
- 22.Mark F.F., Bargeron C.B., Detors O.J., Friedman M.H. Variations in Geometry and Shear Rate Distribution in Casts of Human Aortic Bifurcations. J. Biomech. 1989;22:577–587. doi: 10.1016/0021-9290(89)90009-2. [DOI] [PubMed] [Google Scholar]
- 23.McDonald D.A. Blood Flow in Arteries. 2nd edn. London: Arnold Publishers; 1974. [Google Scholar]
- 24.McGill H.C., McMahan C.A., Malcom G.T., Oalmann M.C., Strong J.P. Effect of Seroum Lipoproteins and Smoking on Atherosclerosis in Young Men and Women. Arterioscler. Thromb. Vasc. Biol. 1997;17:95–106. doi: 10.1161/01.atv.17.1.95. [DOI] [PubMed] [Google Scholar]
- 25.Milner J.S., Moore J.A., Rutt B.K., Teinman D.A. Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies with Models Reconstructed from Magnetic Resonance Imaging of Normal Subjects. J. Vas. Surg. 1998;27:143–156. doi: 10.1016/s0741-5214(98)70210-1. [DOI] [PubMed] [Google Scholar]
- 26.Milnor W.R. Hemodynamics. Baltimore/London: Williams and Wilkins; 1982. [Google Scholar]
- 27.Moore J., Jr., Xu C., Glagov S., Zarins C., Ku D.N. Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis. Atherosclerosis. 1994;110:225–240. doi: 10.1016/0021-9150(94)90207-0. [DOI] [PubMed] [Google Scholar]
- 28.Nitzan M., Babchenko A., Khanokh B., Landau D. The Variability of the Photoplethyamographic Signal: A Potential Method For the Evaluation of the Autonomic Nervous System. Phsiol. Meas. 1998;19:93–102. doi: 10.1088/0967-3334/19/1/008. [DOI] [PubMed] [Google Scholar]
- 29.O'Brien J.R. High Shearing Forces in Blood. Thrombosis Research. 1994;76:103–108. doi: 10.1016/0049-3848(94)90212-7. [DOI] [PubMed] [Google Scholar]
- 30.Pedley T.J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press; 1980. [Google Scholar]
- 31.Perktold K., Rappitsch G. Mathematical Modeling of Arterial Blood Flow and Correlation to Atherosclerosis. Technology and Health Care. 1995;3:139–151. [PubMed] [Google Scholar]
- 32.Perktold K., Resch M., Peter R.O. Three-Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Model. J. Biomech. 1991;24:409–421. doi: 10.1016/0021-9290(91)90029-m. [DOI] [PubMed] [Google Scholar]
- 33.Rader D.J. Gene Therapy for Atherosclerosis. Int. J. Clin. Lab. Res. 1997;271:35–43. doi: 10.1007/BF02827240. [DOI] [PubMed] [Google Scholar]
- 34.Ramadan, Q.M., Hamid, O. and Lim, K.O. Flow in a Rigid Model of the Aortic Arch under Steady Flow Conditions. Malaysian Journal of Physics (in press).
- 35.Rindt C.C.M., Steenhov A.A., Janssen J.D., Renman R.S., Segal A. A Numerical Analysis of Steady Flow in a Three-Dimensional Model of Three Carotid Artery Bifurcation. J. Biomech. 1990;23:461–473. doi: 10.1016/0021-9290(90)90302-j. [DOI] [PubMed] [Google Scholar]
- 36.Scarton, H.A., Shah, P.M. and Tsapogas, M.J.: Relationship of the Spatial Evolution of Secondary Flow in Curved Tube to the Aortic Arch. Mechanics in Engineering-Proceedings of the first ASCE-EMD Specialty Conference on Mechanics in Engineering, University of Waterloo (1977), May 1976, pp, 111–131.
- 37.Schneider D.B., Sassani A.B., Vassalli G., Driscoll R.M., Dichek D.A. Adventitial Delivery Minimizes the Proinflammatory Effects of Adenoviral Vectors. J. Vasc. Surg. 1999;293:543–550. doi: 10.1016/s0741-5214(99)70283-1. [DOI] [PubMed] [Google Scholar]
- 38.Schwartz S.M., Murry C.E. Proliferation and the Monoclonal Origins of Atherosclerotic Lesions. Ann. Rev. Med. 1998;49:437–460. doi: 10.1146/annurev.med.49.1.437. [DOI] [PubMed] [Google Scholar]
- 39.Singh S., Devi L. A Study on Large Radial Motion in Arteries. J. Biomech. 1990;11:1087–1099. doi: 10.1016/0021-9290(90)90001-j. [DOI] [PubMed] [Google Scholar]
- 40.Smedby O. Angiographic Methods for the Study of Fluid Mechanical Factors in Atherogenesis. Sweden: Uppsala: Uppsala University Hospital; 1992. [PubMed] [Google Scholar]
- 41.Stein P.D., Sabbah H.N., Anbe D.T., Khaja F., Walbun H.J. Blood Velocity in the Abdominal Aorta and Common Iliac Artery of Man. Biorheology. 1980;16:249–260. doi: 10.3233/bir-1979-16313. [DOI] [PubMed] [Google Scholar]
- 42.Sud V.K., Sekhon G.S. Steady Flow of Viscous Fluid Through a Network of Tubes with Applications to the Human Arterial System. J. Biomech. 1990;23(6):513–527. doi: 10.1016/0021-9290(90)90045-5. [DOI] [PubMed] [Google Scholar]
- 43.Thomas J.W., Kuo M.D., Chawla M., Waugh G.M., Yuksel E., Wright K.C., Gerrity P.M., Shenaq S.M., Whigham C.J., Fisher R.G. Vascular Gene Therapy. Radiographics. 1998;186:1373–1394. doi: 10.1148/radiographics.18.6.9821188. [DOI] [PubMed] [Google Scholar]
- 44.Topper J.N., Cai J., Falb D., Gimrone M.A. Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Syntheses are Selectively Up-Regulated by Steady Laminar Shear Stress. Proc. Natl. Acad. Sci. U.S.A. 1996;93:10417–10422. doi: 10.1073/pnas.93.19.10417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Topper J.N., Gimbrone M.A. Blood Flow and Vascular Gene Expression: Fluid Shear Stress as a Modulator of Endothelial Phenotype. Molecular Medicine Today. 1999;5(1):40–46. doi: 10.1016/s1357-4310(98)01372-0. [DOI] [PubMed] [Google Scholar]
- 46.Whitmore R.L. Rheology of the Circulation. 1st edn. Oxford: Pergamon Press; 1968. [Google Scholar]
- 47.Zarins C.K., Giddens D.P., Bharadvaj B.K., Sottiurai V.S., Mabon R.F., Glagov S. Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profile and Wall Shear Stress. Circ. Res. 1983;53:502–514. doi: 10.1161/01.res.53.4.502. [DOI] [PubMed] [Google Scholar]
