Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Jul;81(14):4606–4610. doi: 10.1073/pnas.81.14.4606

Local structure involving histidine-12 in reduced S-sulfonated ribonuclease A detected by proton NMR spectroscopy under folding conditions.

J K Swadesh, G T Montelione, T W Thannhauser, H A Scheraga
PMCID: PMC345642  PMID: 6589614

Abstract

The C epsilon H proton resonance of His-12 of reduced cysteine S-sulfonated bovine pancreatic ribonuclease A exhibits a nonlinear temperature dependence of the chemical shift in its 1H-NMR spectrum at an apparent pH of 3.0. At temperatures below ca. 35 degrees C, the temperature dependence of the chemical shift of the His-12 C epsilon H resonance is opposite in sign to those of His-48, His-105, and His-119. At temperatures above ca. 35 degrees C, the temperature dependence of the chemical shift of the His-12 C epsilon H resonance is similar to those of the other three His C epsilon H resonances. These data indicate the existence of an equilibrium between locally ordered and locally disordered environments of His-12 in the sulfonated protein at temperatures below ca. 35 degrees C. The ordered and disordered conformations interconvert at a rate that is fast relative to the 1H-NMR chemical shift time scale--i.e., the locally ordered structure has a lifetime of much less than 7 msec. These results demonstrate that short- and medium-range interactions can define short-lived local structures under conditions of temperature and solution composition at which the native protein structure is stable. Furthermore, they demonstrate the utility of reduced derivatives of disulfide-containing proteins as model systems for the identification of local structures that may play a role as early-forming chain-folding initiation structures.

Full text

PDF
4606

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY J. L., COLE R. D. Studies on the reaction of sulfite with proteins. J Biol Chem. 1959 Jul;234(7):1733–1739. [PubMed] [Google Scholar]
  2. Benz F. W., Roberts G. C. Nucler magnetic resonance studies of the unfolding of pancreatic ribonuclease. J Mol Biol. 1975 Jan 25;91(3):345–365. doi: 10.1016/0022-2836(75)90385-x. [DOI] [PubMed] [Google Scholar]
  3. Bierzynski A., Baldwin R. L. Local secondary structure in ribonuclease A denatured by guanidine . HCl near 1 degree C. J Mol Biol. 1982 Nov 25;162(1):173–186. doi: 10.1016/0022-2836(82)90167-x. [DOI] [PubMed] [Google Scholar]
  4. Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown J. E., Klee W. A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. 1971 Feb 2;10(3):470–476. doi: 10.1021/bi00779a019. [DOI] [PubMed] [Google Scholar]
  6. Burgess A. W., Scheraga H. A. A hypothesis for the pathway of the thermally-induced unfolding of bovine pancreatic ribonuclease. J Theor Biol. 1975 Sep;53(2):403–420. doi: 10.1016/s0022-5193(75)80012-9. [DOI] [PubMed] [Google Scholar]
  7. Chavez L. G., Jr, Scheraga H. A. Folding of ribonuclease, S-protein, and des(121-124)-ribonuclease during glutathione oxidation of the reduced proteins. Biochemistry. 1980 Mar 4;19(5):996–1004. doi: 10.1021/bi00546a026. [DOI] [PubMed] [Google Scholar]
  8. Chavez L. G., Jr, Scheraga H. A. Intrinsic stabilities of portions of the ribonuclease molecule. Biochemistry. 1980 Mar 4;19(5):1005–1012. doi: 10.1021/bi00546a027. [DOI] [PubMed] [Google Scholar]
  9. Chen M. C., Lord R. C. Laser Raman spectroscopic studies of the thermal unfolding of ribonuclease A. Biochemistry. 1976 May 4;15(9):1889–1897. doi: 10.1021/bi00654a015. [DOI] [PubMed] [Google Scholar]
  10. Denton J. B., Konishi Y., Scheraga H. A. Folding of ribonuclease A from a partially disordered conformation. Kinetic study under folding conditions. Biochemistry. 1982 Oct 12;21(21):5155–5163. doi: 10.1021/bi00264a008. [DOI] [PubMed] [Google Scholar]
  11. Galat A., Creighton T. E., Lord R. C., Blout E. R. Circular dichroism, Raman spectroscopy, and gel filtration of trapped folding intermediates of ribonuclease. Biochemistry. 1981 Feb 3;20(3):594–601. doi: 10.1021/bi00506a023. [DOI] [PubMed] [Google Scholar]
  12. HABER E., ANFINSEN C. B. Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease. J Biol Chem. 1961 Feb;236:422–424. [PubMed] [Google Scholar]
  13. Howarth O. W. The thermal unfolding of ribonuclease A. A 13C NMR study. Biochim Biophys Acta. 1979 Jan 25;576(1):163–175. doi: 10.1016/0005-2795(79)90495-1. [DOI] [PubMed] [Google Scholar]
  14. Kato I., Anfinsen C. B. On the stabilization of ribonuclease S-protein by ribonuclease S-peptide. J Biol Chem. 1969 Feb 10;244(3):1004–1007. [PubMed] [Google Scholar]
  15. Kim P. S., Baldwin R. L. Structural intermediates trapped during the folding of ribonuclease A by amide proton exchange. Biochemistry. 1980 Dec 23;19(26):6124–6129. doi: 10.1021/bi00567a027. [DOI] [PubMed] [Google Scholar]
  16. Kim P. S., Bierzynski A., Baldwin R. L. A competing salt-bridge suppresses helix formation by the isolated C-peptide carboxylate of ribonuclease A. J Mol Biol. 1982 Nov 25;162(1):187–199. doi: 10.1016/0022-2836(82)90168-1. [DOI] [PubMed] [Google Scholar]
  17. Konishi Y., Ooi T., Scheraga H. A. Regeneration of RNase A from the reduced protein: models of regeneration pathways. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5734–5738. doi: 10.1073/pnas.79.18.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kotelchuck D., Scheraga H. A. The influence of short-range interactions on protein conformation. I. Side chain-backbone interactions within a single peptide unit. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1163–1170. doi: 10.1073/pnas.61.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kotelchuck D., Scheraga H. A. The influence of short-range interactions on protein onformation. II. A model for predicting the alpha-helical regions of proteins. Proc Natl Acad Sci U S A. 1969 Jan;62(1):14–21. doi: 10.1073/pnas.62.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuwajima K., Baldwin R. L. Nature and locations of the most slowly exchanging peptide NH protons in residues 1 to 19 of ribonuclease S. J Mol Biol. 1983 Sep 5;169(1):281–297. doi: 10.1016/s0022-2836(83)80184-3. [DOI] [PubMed] [Google Scholar]
  21. Kuwajima K., Kim P. S., Baldwin R. L. Strategy for trapping intermediates in the folding of ribonuclease and for using 1H-nmr to determine their structures. Biopolymers. 1983 Jan;22(1):59–67. doi: 10.1002/bip.360220111. [DOI] [PubMed] [Google Scholar]
  22. Labhardt A. M., Baldwin R. L. Recombination of S-peptide with S-protein during folding of ribonuclease S. I. Folding pathways of the slow-folding and fast-folding classes of unfolded S-protein. J Mol Biol. 1979 Nov 25;135(1):231–244. doi: 10.1016/0022-2836(79)90349-8. [DOI] [PubMed] [Google Scholar]
  23. Labhardt A. M. Secondary structure in ribonuclease. I. Equilibrium folding transitions seen by amide circular dichroism. J Mol Biol. 1982 May 15;157(2):331–355. doi: 10.1016/0022-2836(82)90238-8. [DOI] [PubMed] [Google Scholar]
  24. Lin L. N., Brandts J. F. Mechanism for the unfolding and refolding of ribonuclease A. Kinetic studies utilizing spectroscopic methods. Biochemistry. 1983 Feb 1;22(3):564–573. doi: 10.1021/bi00272a007. [DOI] [PubMed] [Google Scholar]
  25. Markley J. L. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Biochemistry. 1975 Aug 12;14(16):3546–3554. doi: 10.1021/bi00687a006. [DOI] [PubMed] [Google Scholar]
  26. Matthews C. R., Westmoreland D. G. Nuclear magnetic resonance studies of residual structure in thermally unfolded ribonuclease A. Biochemistry. 1975 Oct 7;14(20):4532–4538. doi: 10.1021/bi00691a031. [DOI] [PubMed] [Google Scholar]
  27. Némethy G., Scheraga H. A. A possible folding pathway of bovine pancreatic RNase. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6050–6054. doi: 10.1073/pnas.76.12.6050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rico M., Nieto J. L., Santoro J., Bermejo F. J., Herranz J., Gallego E. Low-temperature 1H-NMR evidence of the folding of isolated ribonuclease S-peptide. FEBS Lett. 1983 Oct 17;162(2):314–319. doi: 10.1016/0014-5793(83)80779-0. [DOI] [PubMed] [Google Scholar]
  29. Roberts G. C., Benz F. W. Proton Fourier transform NMR studies of the unfolding of ribonuclease. Ann N Y Acad Sci. 1973 Dec 31;222:130–148. doi: 10.1111/j.1749-6632.1973.tb15257.x. [DOI] [PubMed] [Google Scholar]
  30. Schaffer S. W. Mechanism of glutathione regeneration of reduced pancreatic ribonuclease a. Int J Pept Protein Res. 1975;7(2):179–184. doi: 10.1111/j.1399-3011.1975.tb02430.x. [DOI] [PubMed] [Google Scholar]
  31. Schmid F. X., Baldwin R. L. Detection of an early intermediate in the folding of ribonuclease A by protection of amide protons against exchange. J Mol Biol. 1979 Nov 25;135(1):199–215. doi: 10.1016/0022-2836(79)90347-4. [DOI] [PubMed] [Google Scholar]
  32. Silverman D. N., Kotelchuck D., Taylor G. T., Scheraga H. A. Nuclearmagnetic resonance study of the N-terminal fragment of bovine pancreatic ribonuclease. Arch Biochem Biophys. 1972 Jun;150(2):757–766. doi: 10.1016/0003-9861(72)90095-1. [DOI] [PubMed] [Google Scholar]
  33. Stimson E. R., Montelione G. T., Meinwald Y. C., Rudolph R. K., Scheraga H. A. Equilibrium ratios of cis- and trans-proline conformers in fragments of ribonuclease A from nuclear magnetic resonance spectra of adjacent tyrosine ring resonances. Biochemistry. 1982 Oct 12;21(21):5252–5262. doi: 10.1021/bi00264a021. [DOI] [PubMed] [Google Scholar]
  34. TABORSKY G. Chromatography of ribonuclease on carboxymethyl cellulose columns. J Biol Chem. 1959 Oct;234:2652–2656. [PubMed] [Google Scholar]
  35. Takahashi S., Kontani T., Yoneda M., Ooi T. A circular dichroic spectral study on disulfide-reduced pancreatic ribonuclease A and its renaturation to the active enzyme. J Biochem. 1977 Oct;82(4):1127–1133. doi: 10.1093/oxfordjournals.jbchem.a131785. [DOI] [PubMed] [Google Scholar]
  36. Tanaka S., Scheraga H. A. Hypothesis about the mechanism of protein folding. Macromolecules. 1977 Mar-Apr;10(2):291–304. doi: 10.1021/ma60056a015. [DOI] [PubMed] [Google Scholar]
  37. Thannhauser T. W., Konishi Y., Scheraga H. A. Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal Biochem. 1984 Apr;138(1):181–188. doi: 10.1016/0003-2697(84)90786-3. [DOI] [PubMed] [Google Scholar]
  38. Tsong T. Y., Baldwin R. L., Elson E. L. Properties of the refolding and unfolding reactions of ribonuclease A. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1809–1812. doi: 10.1073/pnas.69.7.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wlodawer A., Bott R., Sjölin L. The refined crystal structure of ribonuclease A at 2.0 A resolution. J Biol Chem. 1982 Feb 10;257(3):1325–1332. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES