Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Dec;28(4):605–617. doi: 10.1023/A:1021278420558

Controlling and Measuring Local Composition and Properties in Lipid Bilayer Membranes

TG D'Onofrio 1, CW Binns 1, EH Muth 1, CD Keating 1, PS Weiss 1,
PMCID: PMC3456460  PMID: 23345801

Abstract

Local composition, structure, morphology, and phase are interrelated in lipid bilayer membranes. This gives us the opportunity to control one or more of these properties by manipulating others. We investigate theserelationships with combinations of simultaneous two-color widefield fluorescence imaging, three-dimensional rendering of vesicle domains, andmanipulation of the vesicle morphology via optical trapping and micropipetteaspiration. We describe methods to modulate, to measure, and to probe thelocal structure of model membranes through control of membrane curvature inliposomes.

Keywords: fluorescence imaging, phase domains, vesicle curvature

Full Text

The Full Text of this article is available as a PDF (279.2 KB).

References

  • 1.Welti R., Glaser M. Lipid Domains in Model and Biological Membranes. Chem. Phys. Lipids. 1994;73:121–137. doi: 10.1016/0009-3084(94)90178-3. [DOI] [PubMed] [Google Scholar]
  • 2.Brown D.A., London E. Structure and Origin of Ordered Lipid Domains in Biological Molecules. J. Membr. Biol. 1998;164:103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  • 3.Damjanovich S., Matyus L., Balazs M., Gaspar R., Krasznai Z., Pieri C., Szollosi J., Tron L. Dynamic Physical Interactions of Plasma Membrane Molecules Generate Cell Surface Patterns and Regulate Cell Activation Processes. Immunobiology. 1992;185:337–349. doi: 10.1016/S0171-2985(11)80651-0. [DOI] [PubMed] [Google Scholar]
  • 4.Needham D. Cohesion and Permeability of Lipid Bilayer Vesicles. In: Disalvo E.A., Simon S.A., editors. Permeability and Stability of Lipid Bilayers. Boca Raton: CRC Press; 1995. [Google Scholar]
  • 5.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. New York: Garland Publishing, Inc.; 1983. [Google Scholar]
  • 6.Yeagle P., editor. The Structure of Biological Membranes. Boca Raton: CRC Press; 1992. [Google Scholar]
  • 7.Lipowsky R. The Conformation of Membranes. Nature. 1991;349:475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  • 8.Kawakatsu T., Andelman D., Kawasaki K., Taniguchi T. Phase-Transitions and Shapes of 2-Component Membranes and Vesicles: 1. Strong Segregation Limit. J. Phys. II. 1993;3:971–997. [Google Scholar]
  • 9.Seifert U., Berndl K., Lipowsky R. Shape Transformations of Vesicles - Phase-Diagram For Spontaneous-Curvature and Bilayer-CouplingModels. Phys. Rev. A. 1991;44:1182–1202. doi: 10.1103/physreva.44.1182. [DOI] [PubMed] [Google Scholar]
  • 10.Seifert U. Curvature-Induced Lateral Phase Segregation in 2-Component Vesicles. Phys. Rev. Lett. 1993;70:1335–1338. doi: 10.1103/PhysRevLett.70.1335. [DOI] [PubMed] [Google Scholar]
  • 11.Seifert U. Configurations of Fluid Membranes and Vesicles. Adv. Phys. 1997;46:13–137. [Google Scholar]
  • 12.Taniguchi T., Kawasaki K., Andelman D., Kawakatsu T. Phase-Transitions and Shapes of 2-Component Membranes and Vesicles: 2. Weak Segregation Limit. J. Phys. II. 1994;4:1333–1362. [Google Scholar]
  • 13.Taniguchi T. Shape Deformation and Phase Separation Dynamics of Two-Component Vesicles. Phys. Rev. Lett. 1996;76:4444–4447. doi: 10.1103/PhysRevLett.76.4444. [DOI] [PubMed] [Google Scholar]
  • 14.Leibier S. Curvature Instability in Membranes. J. Physique. 1986;47:507–516. [Google Scholar]
  • 15.Julicher F., Lipowsky R. Shape Transformations of Vesicles with Intramembrane Domains. Phys. Rev. E. 1996;53:2670–2683. doi: 10.1103/physreve.53.2670. [DOI] [PubMed] [Google Scholar]
  • 16.Drouffe J.M., Maggs A.C., Leibier S. Computer-Simulations of Self-Assembled Membranes. Science. 1991;254:1353–1356. doi: 10.1126/science.1962193. [DOI] [PubMed] [Google Scholar]
  • 17.David F., Leibier S. Vanishing Tension of Fluctuating Membranes. J. Phys. II. 1991;1:959–976. [Google Scholar]
  • 18.Kumar P.B.S., Gompper G., Lipowsky R. Modulated Phases in Multicomponent Fluid Membranes. Phys. Rev. E. 1999;60:4610–4618. doi: 10.1103/physreve.60.4610. [DOI] [PubMed] [Google Scholar]
  • 19.Devaux P.F. Static and Dynamic Lipid Asymmetry in Cell-Membranes. Biochemistry. 1991;30:1163–1173. doi: 10.1021/bi00219a001. [DOI] [PubMed] [Google Scholar]
  • 20.Berndl K., Kas J., Lipowsky R., Sackmann E., Seifert U. Shape Transformations of Giant Vesicles - Extreme Sensitivity to Bilayer Asymmetry. Europhys. Lett. 1990;13:659–664. [Google Scholar]
  • 21.Dobereiner H.G., Kas J., Noppl D., Sprenger I., Sackmann E. Budding and Fission of Vesicles. Biophys. J. 1993;65:1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Farge E., Devaux P.F. Shape Changes of Giant Liposomes Induced by an Asymmetric Transmembrane Distribution of Phospholipids. Biophys. J. 1992;61:347–357. doi: 10.1016/S0006-3495(92)81841-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lehtonen J.Y.A., Holopainen J.M., Kinnunen P.K.J. Evidence for the Formation of Microdomains in Liquid Crystalline Large Unilamellar Vesicles Caused by Hydrophobic Mismatch of the Constituent Phospholipids. Biophys. J. 1996;70:1753–1760. doi: 10.1016/S0006-3495(96)79738-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sackmann, E., Duwe, H.P. and Engelhardt, H.: Membrane Bending Elasticity and Its Role For Shape Fluctuations and Shape Transformations of Cells and Vesicles, Faraday Discuss. (1986), 281–290. [DOI] [PubMed]
  • 25.Korlach J., Schwille P., Webb W.W., Feigenson G.W. Characterization of Lipid Bilayer Phases by Confocal Microscopy and Fluorescence Correlation Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1999;96:8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Bagatolli L.A., Parasassi T., Gratton E. Giant Phospholipid Vesicles: Comparison Among the Whole Lipid Sample Characteristics Using Different Preparation Methods A. Two Photon Fluorescence Microscopy Study. Chem. Phys. Lipids. 2000;105:135–147. doi: 10.1016/s0009-3084(00)00118-3. [DOI] [PubMed] [Google Scholar]
  • 27.Parasassi T., Gratton E. Membrane Lipid Domains and Dynamics as Detected by Laurdan Fluorescence. J. Fluoresc. 1995;5:59–69. doi: 10.1007/BF00718783. [DOI] [PubMed] [Google Scholar]
  • 28.Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase Fluctuation in Phospholipid Membranes Revealed by Laurdan Fluorescence. Biophys. J. 1990;57:1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Buboltz J.T., Feigenson G.W. Detection of Coexisting Bilayer Gel and Fluid Phases by Equilibrium Surface Pressure Analysis. Langmuir. 2000;16:3606–3611. [Google Scholar]
  • 30.Needham D., Zhelev D. The Mechanochemistry of Lipid Vesicles Examined by Micropipet Manipulation Techniques. In: Rosoff M., editor. Vesicles. New York: Marcel Dekker; 1996. pp. 373–443. [Google Scholar]
  • 31.Needham D. Micropipet Manipulation of Lipid Membranes: Direct Measurement of the Material Properties of a Cohesive Structure that is only Two Molecules Thick. J. Mater. Educ. 1992;14:217–238. [Google Scholar]
  • 32.Needham D., Zhelev D.V. Lysolipid Exchange with VesicleMembranes and the Formation and Evolution of Porous Defects. Ann. Biomed. Eng. 1995;23:287–299. doi: 10.1007/BF02584429. [DOI] [PubMed] [Google Scholar]
  • 33.Evans E., Metcalfe M. Free Energy Potential for Aggregation of Giant, Neutral Lipid Bilayer Vesicles by Van der Waals Attraction. Biophys. J. 1984;46:423–426. doi: 10.1016/S0006-3495(84)84039-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Needham D., Evans E. Structure and Mechanical Properties of Giant Lipid (DMPC) Vesicle Bilayers From 20 °C Below to 10 °C Above the Liquid Crystal-Crystalline Phase Transition at 24 °C. Biochemistry. 1988;27:8261–8269. doi: 10.1021/bi00421a041. [DOI] [PubMed] [Google Scholar]
  • 35.Karlsson, R., Karlsson, M., Karlsson, A., Cans, A.-S., Bergenholtz, J., Akerman, B., Ewing, A.G., Voinovaa, M. and Orwar, O.: Fluid and Material Transport in Nanoscale Lipid Channels, in preparation.
  • 36.Dietrich C., Angelova M., Pouligny B. Adhesion of Latex Spheres to Giant Phospholipid Vesicles: Statics and Dynamics. J. Phys. II. 1997;7:1651–1682. [Google Scholar]
  • 37.Keating, C.D., D'Onofrio, T.G., Hatzor, A., Whelpley, A., Natan, M.J. and Weiss, P.S.: In: D.J. Bornhop and K. Licha (eds.), Proceedings of the SPIE3924 (2000), pp. 18–26.
  • 38.Henon S., Lenormand G., Richert A., Gallet F. A New Determination of the Shear Modulus of the Human Erythrocyte Membrane using Optical Tweezers. Biophys. J. 1999;76:1145–1151. doi: 10.1016/S0006-3495(99)77279-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Sleep J., Wilson D., Simmons R., Gratzer W. Elasticity of the Red Cell Membrane and its Relation to Hemolytic Disorders: An Optical Tweezers Study. Biophys. J. 1999;77:3085–3095. doi: 10.1016/S0006-3495(99)77139-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Dai J., Sheetz M.P. Cell Membrane Mechanics. In: Sheetz M.P., editor. Methods in Cell Biology. San Diego: Academic Press; 1998. [PubMed] [Google Scholar]
  • 41.Haugland R.P. Handbook of Fluorescent Probes and Research Chemicals. Sixth ed. United States of America: Molecular Probes Inc.; 1996. [Google Scholar]
  • 42.Akashi K.-I., Miyata H., Itoh H., Kinosita J.K. Formation of Giant Liposomes Promoted by Divalent Cations: Critical Role of Electrostatic Repulsion. Biophys. J. 1998;74:2973–2982. doi: 10.1016/s0006-3495(98)78004-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Ethier M.F., Wolf D.E., Melchior D. A Calorimetric Investigation of the Phase Partitioning of Fluorescent Carbocyanine Probes in Phosphatidylcholine Bilayers. Biochemistry. 1983;22:1178–1182. doi: 10.1021/bi00274a029. [DOI] [PubMed] [Google Scholar]
  • 44.Block, S.: Personal communication.
  • 45.Visscher K., Gross S.P., Block S. Construction of Multiple-Beam Optical Traps with Nanometer-Resolution Position Sensing. IEEE J. Selected Topics in Quantum Electronics. 1996;2:1066–1076. [Google Scholar]
  • 46.Kellermayer M.S.Z., Smith S.B., Bustamante C., Granzier H.L. Complete Unfolding of the Titin Molecule under External Force. J. Struct. Biol. 1998;122:197–205. doi: 10.1006/jsbi.1998.3988. [DOI] [PubMed] [Google Scholar]
  • 47.Russ J.C. The Image Processing Handbook. 2nd ed. Boca Raton: CRC; 1995. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES