Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Dec;28(4):765–780. doi: 10.1023/A:1021259326918

Becoming Multicellular by Aggregation; The Morphogenesis of the Social Amoebae Dicyostelium discoideum

D Dormann 1, B Vasiev 1, CJ Weijer 1,
PMCID: PMC3456464  PMID: 23345812

Abstract

The organisation and form of most organisms is generated during theirembryonic development and involves precise spatial and temporal controlof cell division, cell death, cell differentiation and cell movement.Differential cell movement is a particularly important mechanism in thegeneration of form. Arguably the best understood mechanism of directedmovement is chemotaxis. Chemotaxis plays a major role in the starvationinduced multicellular development of the social amoebae Dictyostelium.Upon starvation up to 105 individual amoebae aggregate to form afruiting body. In this paper we review the evidence that the movement ofthe cells during all stages of Dictyostelium development is controlled bypropagating waves of cAMP which control the chemotactic movement ofthe cells. We analyse the complex interactions between cell-cell signallingresulting in cAMP waves of various geometries and cell movement whichresults in a redistribution of the signalling sources and therefore changes thegeometry of the waves. We proceed to show how the morphogenesis,including aggregation stream and mound formation, slug formation andmigration, of this relatively simple organism is beginning to be understoodat the level of rules for cell behaviour, which can be tested experimentallyand theoretically by model calculations.

Keywords: cell sorting, chemotaxis, modelling, morphogenesis, signal relay, wave propagation

Full Text

The Full Text of this article is available as a PDF (207.0 KB).

References

  • 1.Loomis W.F. The Development of Dictyostelium discoideum. New York: Academic Press; 1982. p. 551. [Google Scholar]
  • 2.Weeks G., Weijer C.J. The Dictyostelium Cell Cycle and Its Relationship to Differentiation (Minireview) FEMS Microbiol. Lett. 1994;124:123–130. doi: 10.1016/0378-1097(94)90239-9. [DOI] [PubMed] [Google Scholar]
  • 3.Devreotes P. Cell-Cell Interactions in Dictyostelium Development. Trends Genet. (TIG) 1989;5:242–245. doi: 10.1016/0168-9525(89)90095-4. [DOI] [PubMed] [Google Scholar]
  • 4.Martiel J.-L., Goldbeter A. A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. Biophys. J. 1987;52:807–828. doi: 10.1016/S0006-3495(87)83275-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Parent C.A., Devreotes P.N. Molecular Genetics of Signal Transduction in Dictyostelium. Annu. Rev. Biochem. 1996;65:411–440. doi: 10.1146/annurev.bi.65.070196.002211. [DOI] [PubMed] [Google Scholar]
  • 6.Gerisch G. Cyclic AMP and Other Signals Controlling Cell Development and Differentiation in Dictyostelium. Annu. Rev. Biochem. 1987;56:853–879. doi: 10.1146/annurev.bi.56.070187.004225. [DOI] [PubMed] [Google Scholar]
  • 7.Firtel R.A. Interacting Signaling Pathways Controlling Multicellular Development in Dictyostelium. Curr. Op. Genet. Devel. 1996;6(5):545–554. doi: 10.1016/s0959-437x(96)80082-7. [DOI] [PubMed] [Google Scholar]
  • 8.Parent C.A., Devreotes P.N. A Cell's Sense of Direction. Science. 1999;284(5415):765–770. doi: 10.1126/science.284.5415.765. [DOI] [PubMed] [Google Scholar]
  • 9.Meili R., et al. Chemoattractant-Mediated Transient Activation and Membrane Localization of Akt/PKB is Required for Efficient Chemotaxis to cAMP in Dictyostelium. Embo J. 1999;18(8):2092–2105. doi: 10.1093/emboj/18.8.2092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Varnum-Finney B., Schroeder N.A., Soll D.R. Adaptation in the Motility Response to cAMP in Dictyostelium discoideum. Cell Motil. Cytoskel. 1988;9:9–16. doi: 10.1002/cm.970090103. [DOI] [PubMed] [Google Scholar]
  • 11.Siegert F., Weijer C. Digital Image Processing of Optical Density Wave Propagation in Dictyostelium discoideum and Analysis of the Effects of Caffeine and Ammonia. J. Cell Sci. 1989;93:325–335. [Google Scholar]
  • 12.Tomchik K.J., Devreotes P.N. Adenosine 3',5'-monophosphate Waves in Dictyostelium discoideum: A Demonstration by Isotope Dilution-Fluorography Technique. Science. 1981;212:443–446. doi: 10.1126/science.6259734. [DOI] [PubMed] [Google Scholar]
  • 13.Levine H., Reynolds W. Streaming Instability of Aggregating Slime Mold Amoebae. Phys. rev. lett. 1991;66:2400–2403. doi: 10.1103/PhysRevLett.66.2400. [DOI] [PubMed] [Google Scholar]
  • 14.Vasiev B.N., Hogeweg P., Panfilov A.V. Simulation of Dictyostelium-Discoideum Aggregation Via Reaction-Diffusion Model. Phys. Rev. Lett. 1994;73(23):3173–3176. doi: 10.1103/PhysRevLett.73.3173. [DOI] [PubMed] [Google Scholar]
  • 15.Rietdorf J., Siegert F., Weijer C.J. Analysis of Optical-Density Wave-Propagation and Cell-Movement During Mound Formation in Dictyostelium-Discoideum. Devel. Biol. 1996;177(2):427–438. doi: 10.1006/dbio.1996.0175. [DOI] [PubMed] [Google Scholar]
  • 16.Harloff C., Gerisch G., Noegel A.A. Selective Elimination of the Contact Site A Protein of Dictyostelium discoideum by Gene Disruption. Genes Devel. 1989;3:2011–2019. doi: 10.1101/gad.3.12a.2011. [DOI] [PubMed] [Google Scholar]
  • 17.Ponte E., et al. Detection of Subtle Phenotypes: The Case of the Cell Adhesion Molecule csA in Dictyostelium. Proc. Nat. Acad. Sci. USA. 1998;95(16):9360–9365. doi: 10.1073/pnas.95.16.9360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Siegert F., Weijer C.J. Spiral and Concentric Waves organize Multicellular Dictyostelium mounds. Curr. Biol. 1995;5:937–943. doi: 10.1016/s0960-9822(95)00184-9. [DOI] [PubMed] [Google Scholar]
  • 19.Gross J.D., Peacey M.J., Trevan D.J. Signal Emission and Signal Propagation During Early Aggregation in Dictyostelium discoideum. J. Cell Sci. 1976;22:645–656. doi: 10.1242/jcs.22.3.645. [DOI] [PubMed] [Google Scholar]
  • 20.Gerisch, G. et al.: Signal Transduction and Chemotaxis in Dictyostelium discoideum, Biol. Chem. H-S (1987), 1045–1046.
  • 21.Dormann D., Vasiev B., Weijer C.J. Propagating Waves Control Dictyostelium discoideum morphogenesis. Biophys. Chem. 1998;72(1-2):21–35. doi: 10.1016/s0301-4622(98)00120-3. [DOI] [PubMed] [Google Scholar]
  • 22.Vasiev B.N., Siegert F., Weijer C.J. Multiarmed Spirals in Excitable Media. Phys. Rev. lett. 1979;78(12):2489–2492. [Google Scholar]
  • 23.Rietdorf J., Siegert F., Weijer C.J. Induction of Optical Density Waves and Chemotactic Cell Movement in Dictyostelium discoideum by Microinjection of cAMP Pulses. Devel. Biol. 1998;204(2):525–536. doi: 10.1006/dbio.1998.9088. [DOI] [PubMed] [Google Scholar]
  • 24.Patel H., et al. A Temperature-Sensitive Adenylyl Cyclase Mutant of Dictyostelium. Embo J. 2000;19(10):2247–2256. doi: 10.1093/emboj/19.10.2247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kim J.Y., Borleis J.A., Devreotes P.N. Switching of Chemoattractant Receptors Programs Development and Morphogenesis in Dictystelium: Receptor Subtypes Activate Common Responses at Different Agonist Concentrations. Devel. Biol. 1998;197(1):117–128. doi: 10.1006/dbio.1998.8882. [DOI] [PubMed] [Google Scholar]
  • 26.Johnson R.L., et al. Identification and Targeted Gene Disruption of cAR3, A cAMP Receptor Subtype Expressed During Multicellular stages of Dictyostelium development. Genes Devel. 1993;7:273–282. doi: 10.1101/gad.7.2.273. [DOI] [PubMed] [Google Scholar]
  • 27.Johnson R.L., et al. The Cyclic Nucleotide Specificity of Three cAMP Receptors in Dictyostelium. J. Biol. Chem. 1992;267:4600–4607. [PubMed] [Google Scholar]
  • 28.Saxe C.L., III, et al. CAR2, A Prestalk cAMP Receptor Required for Normal Tip Formation and Late Development of Dictyostelium discoideum. Genes Devel. 1993;7:262–272. doi: 10.1101/gad.7.2.262. [DOI] [PubMed] [Google Scholar]
  • 29.Dormann D., et al. cAMP Receptor Affinity Controls Wave Dynamics, Geometry and Morphogenesis in Dictyostelium. J. Cell Sci. 2001;114(13):2513–2523. doi: 10.1242/jcs.114.13.2513. [DOI] [PubMed] [Google Scholar]
  • 30.Chung C.Y., Potikyan G., Firtel R.A. Control of Cell Polarity and Chemotaxis by Akt/PKB and PI3 Kinase Through the Regulation of PAKa. Molec. Cell. 2001;7(5):937–947. doi: 10.1016/s1097-2765(01)00247-7. [DOI] [PubMed] [Google Scholar]
  • 31.Meili R., Ellsworth C., Firtel R.A. A Novel Akt/PKB-Related Kinase is Essential for Morphogenesis in Dictyostelium. Current Biol. 2000;10(12):708–717. doi: 10.1016/s0960-9822(00)00536-4. [DOI] [PubMed] [Google Scholar]
  • 32.Williams J. Morphogenesis in Dictyostelium - New Twists to a Not-So-Old Tale. Curr. Op Genet. Devel. 1995;5(4):426–431. doi: 10.1016/0959-437x(95)90044-h. [DOI] [PubMed] [Google Scholar]
  • 33.Williams J., Morrison A. Prestalk Cell-Differentiation and Movement During the Morphogenesis of Dictyostelium discoideum. Progr. Nucl. Acid Res.Mol. Biol. 1994;47:1–27. doi: 10.1016/s0079-6603(08)60248-2. [DOI] [PubMed] [Google Scholar]
  • 34.Williams J.G., Jermyn K.A. Cell Sorting and Positional Differentiation During Dictyostelium Morphogenesis. In: Gerhart J., editor. Cell-Cell Interactions in Early Development. New York: Wiley-Liss; 1991. pp. 261–272. [Google Scholar]
  • 35.Matsukuma S., Durston A.J. Chemotactic Cell Sorting in Dictyostelium discoideum. J. Embryol. Exp. Morphol. 1979;50:243–251. [PubMed] [Google Scholar]
  • 36.Rivero F., et al. The Role of the Cortical Cytoskeleton - F-Actin Cross-Linking Proteins Protect Against Osmotic-Stress, Ensure Cell-Size, Cell-Shape and Motility, and Contribute to Phagocytosis and Development. J. Cell Sci. 1996;109:2679–2691. doi: 10.1242/jcs.109.11.2679. [DOI] [PubMed] [Google Scholar]
  • 37.Springer M.L., Patterson B., Spudich J.A. Stage-Specific Requirement for Myosin II during Dictyostelium Development. Development. 1994;120:2651–2660. doi: 10.1242/dev.120.9.2651. [DOI] [PubMed] [Google Scholar]
  • 38.Siu C.H., Kamboj R.K. Cell-Cell Adhesion and Morphogenesis. Dictyostelium discoideum, Dev. Genet. 1990;11:377–387. doi: 10.1002/dvg.1020110509. [DOI] [PubMed] [Google Scholar]
  • 39.Raper K.B. Pseudoplasmodium Formation and Organization in Dictyostelium discoideum. J. Elisha Mitchell Sci. Soc. 1940;56:241–282. [Google Scholar]
  • 40.Rubin J., Robertson A. The Tip of Dictyostelium discoideum Pseudoplasmodium as an Organizer. J. Embryol. Exp. Morphol. 1975;33:227–241. [PubMed] [Google Scholar]
  • 41.Siegert F., Weijer C.J. Three-Dimensional Scroll Waves Organize Dictyostelium Slugs. Proc. Natl. Acad. Sci. USA. 1992;89:6433–6437. doi: 10.1073/pnas.89.14.6433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Abe T., et al. Patterns of Cell Movement Within the Dictyostelium Slug Revealed by Cell Type-Specific, Surface Labeling of Living Cells. Cell. 1994;77:687–699. doi: 10.1016/0092-8674(94)90053-1. [DOI] [PubMed] [Google Scholar]
  • 43.Bretschneider T., Siegert F., Weijer C.J. Three-Dimensional ScrollWaves of cAMP could direct Cell Movement and Gene Expression in Dictyostelium Slugs. Proc. Natl. Acad. Sci. USA. 1995;92:4387–4391. doi: 10.1073/pnas.92.10.4387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Dormann D., et al. Inducible Nuclear Translocation of a STAT Protein in Dictyostelium Prespore Cells: Implications for Morphogenesis and Cell-Type Regulation. Development. 2001;128(7):1081–1088. doi: 10.1242/dev.128.7.1081. [DOI] [PubMed] [Google Scholar]
  • 45.Pitt G.S., et al. Extracellular cAMP is Sufficient to Restore Developmental Gene Expression and Morphogenesis in Dictyostelium Cells Lacking the Aggregation Adenylyl Cyclase (ACA) Genes Devel. 1993;7:2172–2180. doi: 10.1101/gad.7.11.2172. [DOI] [PubMed] [Google Scholar]
  • 46.Wang B., Kuspa A. Dictyostelium Development in the Absence of cAMP. Science. 1997;277(5323):251–254. doi: 10.1126/science.277.5323.251. [DOI] [PubMed] [Google Scholar]
  • 47.BenJacob E. From Snowflake Formation to Growth of Bacterial Colonies. 2. Cooperative Formation of Complex Colonial Patterns. Cont. Phys. 1997;38(3):205–241. [Google Scholar]
  • 48.Meima M.E., Schaap P. Fingerprinting of Adenylyl Cyclase Activities during Dictyostelium Development Indicates a Dominant Role for Adenylyl Cyclase B in Terminal Differentiation. Devel. Biol. 1999;212(1):182–190. doi: 10.1006/dbio.1999.9352. [DOI] [PubMed] [Google Scholar]
  • 49.Fisher P.R., et al. Photosensory and Thermosensory Responses in Dictyostelium Slugs are Specifically Impaired by Absence of the F-Actin Cross-Linking Gelation Factor (ABP-120) Curr. Biol. 1997;7(11):889–892. doi: 10.1016/s0960-9822(06)00379-4. [DOI] [PubMed] [Google Scholar]
  • 50.Dormann D., Siegert F., Weijer C.J. Analysis of Cell Movement During the Culmination Phase of Dictyostelium Development. Development. 1996;122:761–769. doi: 10.1242/dev.122.3.761. [DOI] [PubMed] [Google Scholar]
  • 51.Chen T.L.L., Wolf W.A., Chisholm R.L. Cell-Type-Specific Rescue of Myosin Function During Dictyostelium Development Defines Two Distinct Cell Movements Required for Culmination. Development. 1998;125(19):3895–3903. doi: 10.1242/dev.125.19.3895. [DOI] [PubMed] [Google Scholar]
  • 52.Noegel A.A., Schleicher M. The Actin Cytoskleleton of Dictyostelium: A Story Told by Mutants. J. Cell Sci. 2000;113(5):759–766. doi: 10.1242/jcs.113.5.759. [DOI] [PubMed] [Google Scholar]
  • 53.Vasiev B., Siegert F., Weijer C.J. A Hydrodynamic Model for Dictyostelium discoideum Mound Formation. J. Theor. Biol. 1997;184(4):441. [Google Scholar]
  • 54.Vasiev B., Weijer C.J. Modeling Chemotactic Cell Sorting During Dictyostelium discoideum Mound Formation. Biophys. J. 1999;76(2):595–605. doi: 10.1016/S0006-3495(99)77228-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Bretschneider T., Vasiev B., Weijer C.J. A Model for Cell Movement During Dictyostelium Mound Formation. J. Theor. Biol. 1997;189(1):41. doi: 10.1006/jtbi.1997.0490. [DOI] [PubMed] [Google Scholar]
  • 56.Bretschneider T., Vasiev B., Weijer C.J. A Model for Dictyostelium Slug Movement. J. Theor. Biol. 1999;199(2):125–136. doi: 10.1006/jtbi.1999.0944. [DOI] [PubMed] [Google Scholar]
  • 57.Kay R.R., Flatman P., Thompson C.R.L. DIF Signalling and Cell Fate. Seminars in Cell & Devel. Biol. 1999;10(6):577–585. doi: 10.1006/scdb.1999.0341. [DOI] [PubMed] [Google Scholar]
  • 58.Schaap P., Tang Y.H., Othmer H.G. A Model for Pattern Formation in Dictyostelium discoideum. Differentiation. 1996;60:1. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES