Abstract
Interactions of adenosine 3':5'-cyclicmonophosphate (cAMP) andN6,2'-O-dibutyryladenosine3':5'-cyclic monophosphate (dbcAMP) with alipid layer composed of monoolein-basedpreparation and dioleoylphosphatidylcholine (DOPC) wereinvestigated by small-angle X-raydiffraction (SAXD) and Raman spectroscopy.The reversed hexagonal (HII)MO/DOPC/H2O phase of 65:15:20 wt.%composition was selected as a referencesystem. SAXD revealed that entrapment (atthe expense of water) of 3 wt.% cAMP intothe reference system did not change thepolymorphic form and structural parametersof the phase. The same content of dbcAMPinduced the transition from the HIIphase to the reversed bicontinuous cubicphase of space group Ia3d. Thistransition is explained by the increase oflipid head-group area due to thepenetration of the acylated adenine groupof dbcAMP into the polar/apolar region oflipid layer. The conclusion is supported byRaman spectroscopy, showing thedisruption/weakening of hydrogen bonding inthe MO/DOPC-based matrix at the N1- andN3-sites of the dbcAMP adenine ring. Asdistinct from dbcAMP, cAMP remains mostlyin the water channels of the HIIphase, although the phosphate residue ofnucleotide interacts with the quaternaryammonium group of DOPC. Both nucleotidesincrease the population of gaucheisomers in the DOPC choline group.
Keywords: Cyclic AMP, dibutyryl cyclic AMP, dioleoyl phosphatidylcholine, liquid-crystalline phases, monoolein, Raman spectroscopy, X-ray diffraction
Full Text
The Full Text of this article is available as a PDF (270.7 KB).
References
- 1.Schwede F., Maronde E., Genieser H.-G., Jastorff B. Cyclic Nucleotide Analogs as Biochemical Tools and Prospective Drugs. Pharmacol. Therapeut. 2000;87:199–226. doi: 10.1016/s0163-7258(00)00051-6. [DOI] [PubMed] [Google Scholar]
- 2.Razumas V., Niaura G., Talaikytė Z., Vagonis A., Nylander T. Interactions of Cyclic AMP and its Dibutyryl Analogue with Model Membrane: X-ray Diffraction and Raman Spectroscopic Study using Liquid-Crystalline Phases of Monoolein. Biophys. Chem. 2001;90:75–87. doi: 10.1016/s0301-4622(01)00133-8. [DOI] [PubMed] [Google Scholar]
- 3.Qiu H., Caffrey M. The Phase Diagram of the Monoolein/Water System: Metastability and Equilibrium Aspects. Biomaterials. 2000;21:223–234. doi: 10.1016/s0142-9612(99)00126-x. [DOI] [PubMed] [Google Scholar]
- 4.Lindblom G., Wieslander A., Sjoelund M., Wikander G. Phase Equilibria of Membrane Lipids for Acheoplasma laidlawii: Importance of a Single Lipid Forming Nonlamellar Phases. Biochemistry. 1986;25:7502–7510. doi: 10.1021/bi00371a037. [DOI] [PubMed] [Google Scholar]
- 5.Landh T. From Entagled Membranes to Eclectic Morphologies: Cubic Membranes as Subcellular Space Organizers. FEBS Lett. 1995;369:13–17. doi: 10.1016/0014-5793(95)00660-2. [DOI] [PubMed] [Google Scholar]
- 6.Deng Y., Landh T. The Cubic Gyroid-Based Membrane Structure of the Chloroplast in Zygnema (Chlorophyceae Zygnematles) Zool. Stud. 1995;37(Suppl.I):175–177. [Google Scholar]
- 7.Morein S., Andersson A-S., Rilfors L., Lindblom G. Wild-type Escherichia coli Cells regulate the Membrane Lipid Composition in a 'Window' between Gel and Non-Lamellar Structures. J. Biol. Chem. 1996;271:6801–6809. doi: 10.1074/jbc.271.12.6801. [DOI] [PubMed] [Google Scholar]
- 8.Deng Y., Mieczkowski M. Three-Dimensional Periodic Cubic Membrane Structure in the Mitochondria of Amoebae Chaos Carolinensis. Protoplasma. 1998;203:16–25. [Google Scholar]
- 9.Li Y.-M., Wei M., Zhao Y.-F. Investigations on the Effects of cAMP on Membrane Phospholipid of Human Erythrocytes by laser Raman Spectroscopy. Spectroscopy Lett. 1999;32:197–203. [Google Scholar]
- 10.Gutman H., Arvidson G., Fontell K., Lindblom G. 31P and 2H NMR Studies of Phase Equilibria in the Three Component System: Monoolein Dioleylphosphatidylcholine. In: Mittal K., Lindman L.B., editors. Surfactants in Solutions. New York: Plenum Press; 1984. pp. 143–152. [Google Scholar]
- 11.Nilsson A., Holmgren A., Lindblom G. Fourier-Transform Infrared Spectroscopic Study of Dioleoylphosphatidylcholine and Monooleoylglycerol in Lamellar and Cubic Liquid Crystals. Biochemistry. 1991;30:2126–2133. doi: 10.1021/bi00222a017. [DOI] [PubMed] [Google Scholar]
- 12.Templer R.H., Madan K.H., Warrender N.A., Seddon J.M. Swollen Lyotropic Cubic Phases in Fully Hydrated Mixtures of Monoolein, Dioleoylphosphatidylcholine, and Dioleoylphosphatidylethanolamine. Springer Proc. Phys. 1992;66:262–265. [Google Scholar]
- 13.Cherezow V., Clogston J., Misquitta Y., Abdel-Gawad W., Caffrey M. Membrane Protein Crystallization in Meso: Lipid Type-Tailoring of the Cubic Phase. Biophys. J. 2002;83:3393–3407. doi: 10.1016/S0006-3495(02)75339-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Seddon J.M. Structure of the Inverted Hexagonal (HII) Phase and Non-Lamellar Phase Transition of Lipids. Biochim. Biophys. Acta. 1990;1031:1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
- 15.Caboi F., Amico G.S., Pitzalis P., Monduzzi M., Nylander T., Larsson K. Addition of Hydrophilic and Lipophilic Compounds of Biological Relevance to the Monoolein/Water System. I. Phase Behavior. Chem. Phys. Lipids. 2001;109:47–62. doi: 10.1016/s0009-3084(00)00200-0. [DOI] [PubMed] [Google Scholar]
- 16.Borné J., Nylander T., Khan A. Phase Behavior and Aggregate Formation for the Aqueous Monoolein System Mixed with Sodium Oleate and Oleic Acid. Langmuir. 2001;17:7742–7751. [Google Scholar]
- 17.Israelachvili J.N., Mitchel D.J., Ninham B.W. Theory of Self-Assembling of Hydrocarbon Amphiphiles into Micelles and Bilayers. J. Chem. Soc., Faraday Trans. 1976;272:1525–1568. [Google Scholar]
- 18.Hyde S.T., Andersson S., Larsson K., Blum Z., Landh T., Lidin S., Ninham B.W. The Language of Shape. The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology. Amsterdam: Elsevier; 1997. [Google Scholar]
- 19.Pohle W., Bohl M., Böhlig H. Interpretation of the Influence of Hydrogen Bonding on the Stretching Vibrations of the PO2− Moiety. J. Mol. Struct. 1990;242:333–342. [Google Scholar]
- 20.Guan Y., Thomas G.J. Vibrational Analysis of Nucleic Acids. III. Conformation-Dependent Raman Markers of Phosphodiester Backbone Modeled by Dimethyl Phosphate. J. Mol. Struct. 1996;379:31–41. [Google Scholar]
- 21.Stangret J., Savoie R. Vibrational Spectroscopic Study of Metal Ions with Diethyl Phosphate, a Model for Biological Systems. Can. J. Chem. 1992;70:2875–2883. [Google Scholar]
- 22.Fujimoto N., Toyama A., Takeuchi H. Binding Modes of Cyclic AMP and Environments of Tryptophan Residues in 1:1 and 1:2 Complexes of Cyclic AMP Receptor Protein and Cyclic AMP. Biopolymers (Biospectroscopy) 2002;67:186–196. doi: 10.1002/bip.10081. [DOI] [PubMed] [Google Scholar]
- 23.Toyama A., Takeuchi H., Harada I. Ultraviolet Resonance Raman Spectra of Adenine, Uracil and Thymine Derivatives in Several Solvents. Correlation between Band Frequencies and Hydrogen-Bonding States of the Nucleic Acid Bases. J. Mol. Struct. 1991;242:87–98. [Google Scholar]
- 24.Štepánek J., Kowalewski J., Lang J. Spectroscopic Investigation of Nickel Cation Binding with Adenine Mononucleotides: Stability and Structure of the 1:2 Complex with Adenosine 5'-Monophosphate. J. Biol. Inorg. Chem. 1998;3:543–556. [Google Scholar]
- 25.Fujimoto N., Toyama A., Takeuchi H. Effects of Hydrogen Bonding on the UV Resonance Raman Bands of the Adenine Ring and its C8-Deuterated Analog. J. Mol. Struct. 1998;447:61–69. [Google Scholar]
- 26.Harrand M. Study of the Configuration of Phospholipids (as Models for Biological Membranes) by Raman Spectroscopy: Intensity and Polarization. In: Alix J.P., Bernard L., Manfait M., editors. Spectroscopy of Biological Molecules. Chichester: John Wiley & Sons; 1985. pp. 265–270. [Google Scholar]
- 27.Larsson K., Rand R.P. Detection of Changes in the Environment of Hydrocarbon Chains by Raman Spectroscopy and its Application to Lipid-Protein Systems. Biochem. Biophys. Acta. 1973;326:245–255. doi: 10.1016/0005-2760(73)90250-6. [DOI] [PubMed] [Google Scholar]
- 28.Razumas V., Talaikytė Z., Barauskas J., Larsson K., Miezis Y., Nylander T. Effects of Distearoylphosphatidylglycerol and Lysozyme on the Structure of the Monoolein-Water Cubic Phase: X-ray Diffraction and Raman Scattering Studies. Chem. Phys. Lipids. 1996;84:123–138. doi: 10.1016/s0009-3084(96)02629-1. [DOI] [PubMed] [Google Scholar]
