Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2001 Jun;27(2-3):133–145. doi: 10.1023/A:1013146530021

The Role of Solvent in Protein Folding and in Aggregation

SM Vaiana 1, M Manno 1, A Emanuele 1, MB Palma-Vittorelli 1, MU Palma 1
PMCID: PMC3456586  PMID: 23345739

Abstract

We discuss features of the effect of solvent on protein folding andaggregation, highlighting the physics related to the particulate nature and the peculiar structure of the aqueous solvent, and the biological significance of interactions between solvent and proteins. To this purpose we use a generalized energy landscape of extended dimensionality. A closer look at the properties of solvent induced interactions and forces proves useful for understanding the physical grounds of `ad hoc' interactions and for devising realistic ways of accounting for solvent effects. The solvent has long been known to be a crucially important part of biological systems, and times appear mature for it to be adequately accounted for in the protein folding problem. Use of the extended dimensionality energy landscape helpseliciting the possibility of coupling among conformational changes and aggregation, such as proved by experimental data in the literature.

Keywords: Computational modeling, energy landscapes, hydration, hydrophobic interactions, protein aggregation, protein conformational changes, protein folding, protein-solvent interactions, spinodal and coexistence

Full Text

The Full Text of this article is available as a PDF (118.7 KB).

References

  • 1.Frauenfelder, H., Bishop, A.R., Garcia, A., Perelson, A. Schusher, P., Sherrington, D. and Swart, P.J. (eds.), Landscape Paradigms in Physics and Biology. Physica107 (1997), 117–436.
  • 2.Dahlem Workshop Reports: In: H. Frauenfelder, J. Deisenhofer and P.G. Wolyness (eds.), Simplicity and Complexity in Proteins and Nucleic Acids, Dahlem University Press, Berlin, 1999.
  • 3.Dobson C.M., Karplus M. The Fudamentals of Protein Folding: Bringing Together Theory and Experiment. Curr. Opin. Struct. Biol. 1999;9:92–101. doi: 10.1016/s0959-440x(99)80012-8. [DOI] [PubMed] [Google Scholar]
  • 4.Frauenfelder, H. and Wolynes, P.G.: Biomolecules: Where the Physics of Complexity and Simplicity Meet. Physics Today (1994), 58–64.
  • 5.Dinner A.R., Šali A., Smith L.J., Dobson C.M., Karplus M. Understanding Protein Folding via Free-energy Surphaces from Theory and Experiment. TIBS. 2000;25:331–339. doi: 10.1016/s0968-0004(00)01610-8. [DOI] [PubMed] [Google Scholar]
  • 6.Chan H.S., Dill K.A. Protein Folding in the Landscape Perspective: Chevron Plots and non-Arrhenius Kinetics. Proteins. 1998;30:2–33. doi: 10.1002/(sici)1097-0134(19980101)30:1<2::aid-prot2>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  • 7.Wolynes, P.G. and Eaton, W.A.: The Physics of Protein Folding. Physics WorldSept. (1999), 39–44.
  • 8.Onuchic J.N., Luthey-Schulten Z., Wolynes P.G. Theory of Protein Folding: the Energy Landscape Perspective. Ann. Rev. Phys. Chem. 1997;48:539–594. doi: 10.1146/annurev.physchem.48.1.545. [DOI] [PubMed] [Google Scholar]
  • 9.Plotkin S.S., Wang J., Wolynes P.G. Statistical Mechanics of a Correlated Energy Landscape Model for Protein Folding Funnels. J. Chem. Phys. 1996;106:2936–2948. [Google Scholar]
  • 10.Weber T.A., Stillinger F.H. The Effect of Density on the Inherent Structures in Liquids. J. Chem. Phys. 1984;80:2742–2746. [Google Scholar]
  • 11.Stillinger F.H. Supercooled Liquid, Class Transitions and the Kauzmann Paradox. J. Chem. Phys. 1988;88:7818–7825. [Google Scholar]
  • 12.Kirkwood J.G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935;3:300–313. [Google Scholar]
  • 13.Hill T.L. Statistical Mechanics. McGraw Hill, Mineola, N.Y: Dover Publications; 1956. [Google Scholar]
  • 14.Bruge' F., Fornili S.L., Malenkov G.G., Palma-Vittorelli M.B., Palma M.U. Solvent-Induced Forces on a Molecular Scale: Non-Additivity, Modulation and Causal Relation to Hydration. Chem. Phys. Lett. 1996;254:283–291. [Google Scholar]
  • 15.San Biagio P.L., Bulone D., Martorana V., Palma-Vittorelli M.B., Palma M.U. Physics and Biophysics of Solvent Induced Forces: Hydrophobic Interactions and Context-Dependent Hydration. Eur. Biophys. J. 1998;27:183–196. [Google Scholar]
  • 16.Alder B.J. Triplet Correlations in Hard Spheres. Phys. Rev. Lett. 1964;12:317–319. [Google Scholar]
  • 17.Bildstein B., Kahl G. Triplet Correlation Functions for Hard Spheres: Computer Simulation Results. J. Chem. Phys. 1994;100:5882–5893. [Google Scholar]
  • 18.Hernando J.A., Gamba Z. A Modified Superposition Approximation to the Three-Body Distribution Function. J. Chem. Phys. 1992;97:5142–5147. [Google Scholar]
  • 19.Martorana V., Bulone D., San Biagio P.L., Palma-Vittorelli M.B., Palma M.U. Collective Properties of Hydration: Long Range and Specificity of Hydrophobic Interactions. Biophys. J. 1997;73:31–37. doi: 10.1016/S0006-3495(97)78044-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Martorana V., Corongiu G., Palma M.U. Interaction of Explicit Solvent with Hydrophobic/ Philic/Charged Residues of a Protein: Residue Character Vs. Conformational Context. Proteins. 1998;32:129–135. [PubMed] [Google Scholar]
  • 21.Martorana V., Corongiu G., Palma M.U. Correlated Solvent-Induced Forces on a Protein at Single Residue Resolution: Relation to Conformation, Stabilty, Dynamics and Function. Chem. Phys. Lett. 1996;254:292–301. [Google Scholar]
  • 22.Bulone D., San Biagio P.L., Palma-Vittorelli M.B., Palma M.U. The Role of Water in Hemoglobin Function and Stability. Science. 1993;259:1335–1336. doi: 10.1126/science.8446903. [DOI] [PubMed] [Google Scholar]
  • 23.San Biagio P.L., Palma M.U. Spinodal Lines and Flory-Huggins Free-Energies for Solutions of Human Hemoglobins HbS HbA. Biophys. J. 1991;60:508–512. doi: 10.1016/S0006-3495(91)82078-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.San Biagio P.L., Bulone D., Emanuele A., Palma M.U. Self-Assembly of Biopolymeric Structures below the Threshold of Random Cross-Link Percolation. Biophys. J. 1996;70:494–499. doi: 10.1016/S0006-3495(96)79595-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sciortino F., Prasad K.U., Urry D.W., Palma M.U. Self-Assembly of Bioelastomeric Structures from Solutions: Mean-Field Critical Behavior and Flory-Huggins Free Energy of Interactions. Biopolymers. 1993;33:743–752. doi: 10.1002/bip.360330504. [DOI] [PubMed] [Google Scholar]
  • 26.San Biagio P.L., Martorana V., Emanuele A., Vaiana S.M., Manno M., Bulone D., Palma-Vittorelli M.B., Palma M.U. Interacting Processes in Protein Coagulation. Proteins. 1999;37:116–120. doi: 10.1002/(sici)1097-0134(19991001)37:1<116::aid-prot11>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  • 27.Bulone D., Martorana V., San Biagio P.L., Palma-Vittorelli M.B. Effects of Electric Charges on Hydration Forces. Phys. Rev. E. 1997;56:R4939–R4942. doi: 10.1103/physreve.62.6799. [DOI] [PubMed] [Google Scholar]
  • 28.Bulone D., Martorana V., San Biagio P.L., Palma-Vittorelli M.B. Effects of Electric Charges on Hydration Forces. II. Phys. Rev. E. 2000;62:6799–6809. doi: 10.1103/physreve.62.6799. [DOI] [PubMed] [Google Scholar]
  • 29.Anfinsen C.B. Principles that Govern the Folding of Protein Chains. Science. 1973;181:223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  • 30.Fisher I.Z. Statistical Theory of Liquids. Chicago: University of Chicago Press; 1964. [Google Scholar]
  • 31.Eisenberg D., Kauzmann W. The Structure and Properties of Water. Oxford: Oxford University Press; 1969. [Google Scholar]
  • 32.Lifson S., Oppenheim I. Neighbor Interactions and Internal Rotations in Polymer Molecules. IV. Solvent Effect on Internal Rotations. J. Chem. Phys. 1960;33:109–115. [Google Scholar]
  • 33.Bruge' F., Fornili S.L., Palma-Vittorelli M.B. Solvent-Induced Forces between Solutes: a Time-and Space-Resolved Molecular Dynamics Study. J. Chem. Phys. 1994;101:2407–2420. [Google Scholar]
  • 34.LiCata V.J., Ackers G.K. Long-Range, Small Magnitude Nonadditivity of Mutational Effects in Proteins. Biochemistry. 1995;36:3133–3139. doi: 10.1021/bi00010a001. [DOI] [PubMed] [Google Scholar]
  • 35.San Biagio P.L., Martorana V., Bulone D., Palma-Vittorelli M.B., Palma M.U. Solvent-Induced Free Energy Landscape and Solute-Solvent Dynamic Coupling in a Multielement Solute. Biophys. J. 1999;77:2470–2478. doi: 10.1016/S0006-3495(99)77083-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Vaiana, A.C. and Palma-Vittorelli, M.B.: Configurational Landscape and Hydration Recon-figuration of a Multi-Element Model Solute in Explicit Water. In: Messina, A. (ed.), Nuclear and Condensed Matter Physics, AIP Conference Proceedings Melville, New York, 2000, pp. 238–241.
  • 37.Bulone D., Palma-Vittorelli M.B., Palma M.U. Enthalpic and Entropic Contributions of Water Molecules to the Functional T-R Transition of Human Hemoglobin in Solution. Int. J. Quant. Chem. 1992;42:1427–1437. [Google Scholar]
  • 38.Post C.B., Zimm B.H. Theory of DNA Condensation: Collapse Versus Aggregation. Biopolymers. 1982;21:2123–2137. doi: 10.1002/bip.360211104. [DOI] [PubMed] [Google Scholar]
  • 39.Chan H.S., Dill K.A. Polymer Principles in Protein Structure and Stability. Annu. Rev. Biophys. Biophys. Chem. 1991;20:447–490. doi: 10.1146/annurev.bb.20.060191.002311. [DOI] [PubMed] [Google Scholar]
  • 40.Dill K.A. Dominant Forces in Protein Folding. Biochemistry. 1990;29:7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  • 41.Perutz M.F. Mutations Make Enzyme Polymerize. Nature. 1997;385:773–775. doi: 10.1038/385773a0. [DOI] [PubMed] [Google Scholar]
  • 42.de Gennes P.G. Scaling Concepts in Polymer Physics. Ithaca, N.Y.: Cornell University Press; 1979. [Google Scholar]
  • 43.San Biagio P.L., Madonia F., Newman J., Palma M.U. Sol-Sol Structural Transition of Aqueous Agarose Systems. Biopolymers. 1986;25:2255–2269. [Google Scholar]
  • 44.Leone M., Sciortino F., Migliore M., Fornili S.L., Palma-Vittorelli M.B. Order Parameters of Gels and Gelation Kinetics of Aqueous Agarose Systems: Relation to the Spinodal Decomposition af the Sol. Biopolymers. 1987;26:743–761. [Google Scholar]
  • 45.Emanuele A., Di Stefano L., Giacomazza D., Trapanese M., Palma-Vittorelli M.B., Palma M.U. Time-Resolved Study of Network Self-Organization from a Biopolymeric Solution. Biopolymers. 1991;91:859–868. [Google Scholar]
  • 46.San Biagio P.L., Bulone D., Emanuele A., Palma-Vittorelli M.B., Palma M.U. Spontaneous Symmetry-Breaking Pathways: Time-Resolved Study. Food Hydrocolloids. 1996;10:91–97. [Google Scholar]
  • 47.Manno M., Palma M.U. Fractal Morphogenesis and Interacting Processes in Gelation. Phys. Rev. Lett. 1997;79:4286–4289. [Google Scholar]
  • 48.Manno M., Emanuele A., Bulone D., San Biagio P.L., Palma-Vittorelli M.B., Palma M.U. Multiple Interactions Between Molecular and Supramolecular Ordering. Phys. Rev. E. 1999;59:2222–2230. [Google Scholar]
  • 49.Manno, M., Emanuele, A., Martorana, V., San Biagio, P.L., Bulone, D., Palma-Vittorelli, M.B., McPherson, D.T., Xu, J., Parker T.M., Urry D.W.: Interaction of Processes on Different Length Scales in a Bioelastomer Capable of Performing Energy Conversion (submitted). [DOI] [PubMed]
  • 50.Berendsen H.J.C. A Glimpse of the Holy Grail? Science. 1998;282:740–749. doi: 10.1126/science.282.5389.642. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES