Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2001 Jun;27(2-3):257–283. doi: 10.1023/A:1013178514397

Structural Complexity of Early Embryos: A Study on the Nematode Caenorhabditis elegans

FA Bignone 1
PMCID: PMC3456589  PMID: 23345748

Abstract

For analytical studies on the dynamics of gene expression, gene expressioncontrol and cellular interactions, the nematode Caenorhabditis elegans[C. elegans] is at present one of the best suited models [1–4].In this organism the genetic map and sequence is known [5], moreover theconstancy of its lineage tree allows a complete description of cellularclones giving rise to embryos. These characteristics have fostered detailedstudies on several aspects of development for this organism. Quantitativestudies of cellular movement, through time lapse cinematography of gastrulation, allows the description of cellular migrations giving rise to the final embryonic structure. In perspective, these studies coupledwith: genetic analysis, patterns of gene expression obtained throughmolecular techniques or other methods, open up the possibility of dynamicalstudies at the organismic scale. This possibility implies, first of all,a study of partitioning of space, and raise several problems in order todefine basic conceptual tools to be used in such studies. One of the mainproblems to handle in this respect is the definition of embryonic structurein a quantitative way. We will show that this aspect is a more generalcase of distance geometry approaches, as defined in protein folding studies.In this paper we discuss measures of the complexity for embryonal body plans,at the end of grastrulation. These can be applied to studies on the dynamicsof gene expression and phylogenetic studies with further experiments orsimulations.

Keywords: Body plan, Caenorhabditis elegans, complexity, development, dynamical systems, gastrulation, genetic networks, protein folding

Full Text

The Full Text of this article is available as a PDF (520.1 KB).

References

  • 1.Brenner S. The Genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sulston J.E., Schierenberg E., White J.G., Thompson J.N. The Embryonic Lineage of the Nematode Caenorhabditis elegans. Dev. Biol. 1983;100:64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  • 3.Riddle D.L., Blumenthal T., Meyer B.J., Priess J.R., editors. Caenorhabditis elegans II. New York, NY: Cold Spring Harbor Laboratory Press; 1997. [PubMed] [Google Scholar]
  • 4.Wood W.B., editor. The Nematode Caenorhabditis elegans. New York, NY: Cold Spring Harbor Laboratory Press; 1988. [Google Scholar]
  • 5.The C. elegans Sequencing Consortium. Science282 (1998), 2012–2018. [DOI] [PubMed]
  • 6.Raff R.A. The Shape of Life, Development, and the Evolution of Animal Form. Chicago, Ill: University of Chicago Press; 1996. [Google Scholar]
  • 7.Treadwell A.L. Cytogeny of Podarke Obscura Verril. J. Morphol. 1901;17:399–460. [Google Scholar]
  • 8.Bezem J.J., Raven C.P. Computer Simulation of Early Embryonic Development. J. Theoret. Biol. 1975;54:47–61. doi: 10.1016/s0022-5193(75)80054-3. [DOI] [PubMed] [Google Scholar]
  • 9.Raven C.P., Bezem J.J. Analysis of Pattern Formation in Gastropods by Means of Computer Simulation. In: Lindenmayer A., Rozemberg G., editors. Automata, Language, Development. Amsterdam, The Netherlands: North-Holland Publishing Co.; 1976. pp. 139–145. [Google Scholar]
  • 10.Schnabel R, Hutter H., Moerman D., Schnabel H. Assessing Normal Embryogenesis in Caernorhabditis elegans using a 4D Microscope: Variability of Development and Regional Specification. Dev. Biol. 1997;184:234–265. doi: 10.1006/dbio.1997.8509. [DOI] [PubMed] [Google Scholar]
  • 11.Rusin Y., Malakhov V.V. Free-Living Marine Nematodes Possess no Eutely. Dokl. Biol. Sci. 1998;361:331–333. [Google Scholar]
  • 12.Malakhov V.V. Embryological and Histological Peculiarities of the Order Enoplida, A Primitive Group of Nematodes. Russ. J. Nematol. 1998;6(1):41–46. [Google Scholar]
  • 13.Voronov D.A., Panchin Y.V. Cell Lineage in Marine Nematode Enoplus brevis. Development. 1998;125:143–150. doi: 10.1242/dev.125.1.143. [DOI] [PubMed] [Google Scholar]
  • 14.Labouesse M., Mango S.E. Patterning the C. elegans Embryo. Trends Genet. 1999;15:307–313. doi: 10.1016/s0168-9525(99)01750-3. [DOI] [PubMed] [Google Scholar]
  • 15.Azevedo R.B.R., Cunha A., Emmons S.W., Leroi A.M. The Demise of the Platonic Worm. Nematology. 2000;2(1):71–79. [Google Scholar]
  • 16.Tyler-Bonner J. The Evolution of Complexity, by Means of Natural Selection. Princeton, NJ: Princeton University Press; 1988. [Google Scholar]
  • 17.Kauffman S.A. The Origins of Order: Self-Organization and Selection in Evolution. Oxford, UK and New York, NY: Oxford University Press; 1993. [Google Scholar]
  • 18.Badii R., Politi A. Complexity. Hierarchical Structures and Scaling in Physics. Cambridge, UK: Cambridge University Press; 1997. [Google Scholar]
  • 19.Eigen M. Self-Organization of Matter and the Evolution of Biological Macromolecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  • 20.Eigen M., McCaskill J., Schuster P. The Molecular Quasi-Species. Adv. Chem. Phys. 1989;75:149–263. [Google Scholar]
  • 21.Langton C.G. Computation at the Edge of Chaos: Phase Transition and Emergent Computations. Physica D. 1990;42:12–37. [Google Scholar]
  • 22.McGhee G.R., Jr. Theoretical Morphology: The Concept and its Applications. New York, NY: Columbia University Press; 1998. [Google Scholar]
  • 23.Allen M.P., Tildesley D.J. Computer Simulation of Liquids. New York, NY: Oxford University Press; 1990. [Google Scholar]
  • 24.Plaxco K.W., Simons K.T., Baker D. Contact Order, Transition State Placement and the Re-Folding of Single Domain Proteins. J. Mol. Biol. 1998;277:985–994. doi: 10.1006/jmbi.1998.1645. [DOI] [PubMed] [Google Scholar]
  • 25.Grantcharova V., Alm E.J., Baker D., Horwich A.L. Mechanisms of Protein Folding. Curr. Opin. in Struct. Biol. 2001;11:70–81. doi: 10.1016/s0959-440x(00)00176-7. [DOI] [PubMed] [Google Scholar]
  • 26.Elofsson A., Le Grand S.M., Eisenberg D. Local Moves: An Efficient Algorithm for Simulation of Protein Folding. Proteins. 1995;23:73–82. doi: 10.1002/prot.340230109. [DOI] [PubMed] [Google Scholar]
  • 27.Biggs N. Algebraic Graph Theory. London: Cambridge University Press; 1974. [Google Scholar]
  • 28.Bignone F.A., Livi R., Propato M. Complex Evolution in Genetic Networks. Europhys. Lett. 1997;40(5):497–502. [Google Scholar]
  • 29.Kaneko K., Yomo T. Isologus Diversification for Robust Development of Cell Society. J. Theoret. Biol. 1999;199(3):243–256. doi: 10.1006/jtbi.1999.0952. [DOI] [PubMed] [Google Scholar]
  • 30.Bignone F.A. Coupled Map Lattices Dynamics on a Variable Space for the Study of Development: A General Discussion on Caenorhabditis elegans. Theoret. Comput. Sci. 1999;217:157–172. [Google Scholar]
  • 31.Hogeweg P. Evolving mechanisms of Morphogenesis: On the Interplay Between Differential Adhesion and Cell Differentiation. J. Theoret. Biol. 2000;203:317–333. doi: 10.1006/jtbi.2000.1087. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES