Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Jun;28(2):195–210. doi: 10.1023/A:1019994628793

Domains and Rafts in Membranes – Hidden Dimensions of Selforganization

Reinhard Lipowsky 1
PMCID: PMC3456656  PMID: 23345769

Abstract

Both biomembranes and biomimetic membranes such as lipid bilayers withseveral components contain intramembrane domains and rafts.Macromolecules, which are anchored to the membrane but have no tendeney tocluster, induce curved nanodomains. Clustering of membrane componentsleads to larger domains which can grow up to a certain maximal size andthen undergo a budding process. The maximal domain size depends on theinterplay of spontaneous curvature, bending rigidity, and line tension.It is argued that this interplay governs the formation of bothclathrin-coated buds and caveolae. Finally, membrane adhesion often leadsto domain formation within the contact zone.

Keywords: adhesion, anchored polymer, anchored sticker, budding, caveolae, curvature, domain, membrane, raft

Full Text

The Full Text of this article is available as a PDF (199.4 KB).

References

  • 1.Lipowsky R. Budding of membranes induced by intramembrane domains. J. Phys. II France. 1992;2:1825–1840. [Google Scholar]
  • 2.Jülicher F., Lipowsky R. Domain-induced budding of vesicles. Phys. Rev. Lett. 1993;70:2964–2967. doi: 10.1103/PhysRevLett.70.2964. [DOI] [PubMed] [Google Scholar]
  • 3.Kumar S., Gompper G., Lipowsky R. Budding dynamics of multicomponent membranes. Phys. Rev. Lett. 2001;86:3911–3914. doi: 10.1103/PhysRevLett.86.3911. [DOI] [PubMed] [Google Scholar]
  • 4.Döbereiner H.-G., Käs J., Noppl D., Sprenger I., Sackmann E. Budding and fission of vesicles. Biophys. J. 1993;65:1396–1403. doi: 10.1016/S0006-3495(93)81203-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Bradley A.J., Maurer-Spurej E., Brooks D.E., Devine D.V. Unusual electrostatic effects on binding of C1q to anionic liposomes: Role of anionic phospholipid domains and their line tension. Biochemistry. 1999;38:8112–1823. doi: 10.1021/bi990480a. [DOI] [PubMed] [Google Scholar]
  • 6.Holopainen J.M., Angelova M.I., Kinnunen P.K.J. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 2000;78:830–838. doi: 10.1016/S0006-3495(00)76640-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Schekman R., Orci L. Coat proteins and vesicle budding. Science. 1996;271:1526–1533. doi: 10.1126/science.271.5255.1526. [DOI] [PubMed] [Google Scholar]
  • 8.Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  • 9.Jacobson K., Dietrich C. Looking at lipid rafts? Trends in Cell Biology. 1999;9:87–91. doi: 10.1016/s0962-8924(98)01495-0. [DOI] [PubMed] [Google Scholar]
  • 10.Huttner W.B., Zimmerberg J. Implications of lipid microdomains formembrane curvature, budding and fission. Curr. Opinion Cell Biol. 2001;13:478–484. doi: 10.1016/s0955-0674(00)00239-8. [DOI] [PubMed] [Google Scholar]
  • 11.Thompson T.E., Tillack T.W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Ann. Rev. Biophys. Biophys. Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  • 12.Sek W. H. The spatial distribution of cholesterol in membranes. In: Yeagle P.L., editor. Biology of cholesterol. Boca Raton: CRC Press; 1988. [Google Scholar]
  • 13.Scheiffele P., Rietveld A., Wilk T., Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 1999;247:2038–2044. doi: 10.1074/jbc.274.4.2038. [DOI] [PubMed] [Google Scholar]
  • 14.Lu X., Silver J. Ecotropic murine leukemia virus receptor is physically associated with caveolin and membrane rafts. Virology. 2000;276:251–258. doi: 10.1006/viro.2000.0555. [DOI] [PubMed] [Google Scholar]
  • 15.Keller S.L., Pitcher W.H., III, Huestis W.H., McConnell H.M. Red blood cell lipids form immiscible liquids. Phys. Rev. Lett. 1998;81:5019–5022. [Google Scholar]
  • 16.Dietrich C., Bagatolli L.A., Volovyk Z.N., Thompson N.L., Levi M., Jacobson K., Gratton E. Lipid rafts reconstituted in model membranes. Biophys. J. 2001;80:1417–1428. doi: 10.1016/S0006-3495(01)76114-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Korlach J., Schwille P., Webb W.W., Feigenson G.W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA. 1999;96:8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bagatolli L.A., Gratton E. Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys. J. 1999;77:2090–2101. doi: 10.1016/S0006-3495(99)77050-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lipowsky R. Bending of membranes by anchored polymers. Europhys. Lett. 1995;30:197–202. [Google Scholar]
  • 20.Hiergeist C., Lipowsky R. Elastic properties of polymer-decorated membranes. J. Phys. France. 1996;6:1465–1481. [Google Scholar]
  • 21.Breidenich M., Netz R., Lipowsky R. The shape of polymer-decorated membranes. Europhys. Lett. 2000;49:431–437. [Google Scholar]
  • 22.Hiergeist C., Indrani V.A., Lipowsky R. Membranes with anchored polymers at the adsorption transition. Europhys. Lett. 1996;36:491–496. [Google Scholar]
  • 23.Breidenich M., Netz R., Lipowsky R. Adsorption of polymers anchored to membranes. Eur. Phys. J. E. 2001;5:403–414. [Google Scholar]
  • 24.Decher G., Kuchinka E., Ringsdorf H., Venzmer J., Bitter-Suermann D., Weisgerber C. Interaction of amphiphilic polymers with model membranes. Angew. Makromol. Chem. 1989;166:71–80. [Google Scholar]
  • 25.Simon J., Kühner M., Ringsdorf H., Sackmann E. Polymer-induced shape changes and capping in giant liposomes. Chem. Phys. Lipids. 1995;76:241–258. [Google Scholar]
  • 26.Döbereiner H.G., Lehmann A., Goedel W., Selchow O., Lipowsky R. Membrane curvature induced by sugar and polymer solutions. In: Mulder B., Schmidt C.F., Vogel V., editors. Materials Science of the Cell489, of Mat. Res. Soc. Symp. Proc. Warrendale, Pennsylvania: MRS; 1998. pp. 101–106. [Google Scholar]
  • 27.Frette V., Tsafrir I., Guedeau-Boudeville M.A., Jullien L., Kandel D., Stavans J. Coiling of cylindrical membrane stacks with anchored polymers. Phys. Rev. Lett. 1999;83:2465–2468. [Google Scholar]
  • 28.Jakobs B., Sottmann T., Strey R., Allgaier J., Willner L., Richter D. Amphiphilic block copolymers as efficiency boosters for microemulsions. Langmuir. 1999;15:6707–6711. [Google Scholar]
  • 29.Tsafrif, I., Guedeau-Boudeville, M.A., Kandel, D. and Stavans, J.: Coiling instability of multilamellar membrane tubes with anchored polymers, Phys. Rev. E63 (2001), 031603/1–11. [DOI] [PubMed]
  • 30.Gompper, G., Edo, H., Mihailescu, M., Allgaier, J., Monkenbusch, M., Richter, D., Jakobs, B., Sottmann, T. and Strey, R.: Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions, Europhys. Lett. (in press).
  • 31.Dimova, R., Döbereiner, H.G. and Lipowsky, R.: In preparation.
  • 32.Lipowsky R., Döbereiner H.G., Hiergeist C., Indrani V. Membrane curvature induced by polymers and colloids. Physica A. 1998;249:536–543. [Google Scholar]
  • 33.Duwe H.P., Käs J., Sackmann E. Bending elastic moduli of lipid bilayers: Modulation by solutes. J. Phys. France. 1990;51:945–962. [Google Scholar]
  • 34.Benvegnu D.J., McConnell H.M. Line tension between liquid domains in lipid monolayers. J. Phys. Chem. 1992;96:6820–6824. [Google Scholar]
  • 35.Goetz R., Gompper G., Lipowsky R. Mobilitiy and elasticity of self-assembled membranes. Phys. Rev. Lett. 1999;82:221–224. [Google Scholar]
  • 36.Pralle A., Keller P., Florin E.L., Simons K., Hörber J.K.H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 2000;148:997–1007. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Brown D.A., London E. Structure and origin of ordered lipid domains in biological membranes. J. Membrane Biol. 1998;164:103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  • 38.Harder T., Scheiffele P., Verkade P., Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell. Biol. 1998;141:929–942. doi: 10.1083/jcb.141.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Nardi J., Feder T., Bruinsma R., Sackmann E. Electrostatic adhesion between fluid membranes: phase separation and blistering. Europhys. Lett. 1997;37:371–376. [Google Scholar]
  • 40.Albersdörfer A., Feder T., Sackmann E. Adhesion-induced domain formation by interplay of long-range repulsion and short-range attraction force: A model membrane study. Biophys. J. 1997;73:245–257. doi: 10.1016/S0006-3495(97)78065-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Braun D., Fromherz P. Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys. Rev. Lett. 1998;81:5241–5244. [Google Scholar]
  • 42.Lipowsky R. Adhesion of membranes via anchored stickers. Phys. Rev. Lett. 1996;77:1652–1655. doi: 10.1103/PhysRevLett.77.1652. [DOI] [PubMed] [Google Scholar]
  • 43.Weikl T., Netz R., Lipowsky R. Unbinding transitions and phase separation of multicomponent membranes. Phys. Rev. E. 2000;62:R45–R48. doi: 10.1103/physreve.62.r45. [DOI] [PubMed] [Google Scholar]
  • 44.Bruinsma R., Behrisch A., Sackmann E. Adhesive switching of membranes: Experiment and theory. Phys. Rev. E. 2000;61:4253–4267. doi: 10.1103/physreve.61.4253. [DOI] [PubMed] [Google Scholar]
  • 45.Komura S., Andelman D. Adhesion-induced lateral phase separation in membranes. Eur. Phys. J. E. 2000;3:259–271. [Google Scholar]
  • 46.Weikl T., Lipowsky R. Adhesion-induced phase behavior of multicomponent membranes. Phys. Rev. E. 2001;64:11903–11915. doi: 10.1103/PhysRevE.64.011903. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES