Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2002 Jun;28(2):279–288. doi: 10.1023/A:1019987816498

A Stochastic Model of Conductance Transitions in Voltage-Gated IonChannels

Kwonmoo Lee, Wokyung Sung
PMCID: PMC3456657  PMID: 23345775

Abstract

We present a statistical physics model to describe the stochastic behaviorof ion transport and channel transitions under an applied membrane voltage.To get pertinent ideas we apply our general theoretical scheme to ananalytically tractable model of the channel with a deep binding site whichinteracts with the permeant ions electrostatically. It is found that theinteraction is modulated by the average ionic occupancy in the bindingsite, which is enhanced by the membrane voltage increases. Above acritical voltage, the interaction gives rise to a emergence of a newconducting state along with shift of S4 charge residues in the channel.This exploratory study calls for further investigations to correlate thecomplex transition behaviors with a variety of ion channels, withparameters in the model, potential energy parameters, voltage, and ionicconcentration.

Keywords: channel conformational transition, ion transport, on-channel interaction, S4 charge group

Full Text

The Full Text of this article is available as a PDF (175.9 KB).

References

  • 1.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. Molecular Biology of the Cell. 3rd ed. New York: Garland Publishing; 1994. [Google Scholar]
  • 2.Unwin N. The structure of ion channels in membranes of excitable cells. Neuron. 1989;3:665–676. doi: 10.1016/0896-6273(89)90235-3. [DOI] [PubMed] [Google Scholar]
  • 3.Chancey C.C., George S.A. Physical model of voltage sensing in sodium channels based on the sliding helix complex. Phys.Rev. E. 1996;53:5137–5145. doi: 10.1103/physreve.53.5137. [DOI] [PubMed] [Google Scholar]
  • 4.Mannuzzu L.M., Moronne M.M., Isacoff E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science. 1996;271:213–216. doi: 10.1126/science.271.5246.213. [DOI] [PubMed] [Google Scholar]
  • 5.Larsson H.P., Baker O.S., Dhillon D.S., Isacoff E.Y. Transmembrane movement of the Shaker K+ channel S4. Neuron. 1996;16:387–397. doi: 10.1016/s0896-6273(00)80056-2. [DOI] [PubMed] [Google Scholar]
  • 6.Levitt D.G. Interpretation of biological flux data: reaction-rate theory versus continuum theory. Ann. Rev. Biophys. Biophys. Chem. 1986;15:29–57. doi: 10.1146/annurev.bb.15.060186.000333. [DOI] [PubMed] [Google Scholar]
  • 7.Honig B.H., Hubbel W.L., Flewelling R.F. Electrostatic Interations in Membranes and Proteins. Ann. Rev. Biophys. Biophys. Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
  • 8.Hille B. Ionic Channels of Excitable Membranes. 2nd ed. Massachusetts: Sinauer; 1992. [Google Scholar]
  • 9.White P.J., Smahel M., Thiel G. Characterization of ion channels from Acetabularia plasma membrane in planar lipid bilayers. J. Membrane Biol. 1993;133:145–160. doi: 10.1007/BF00233795. [DOI] [PubMed] [Google Scholar]
  • 10.Haken H. Synergetics. 3rd ed. Berlin: Springer-Verlag; 1983. [Google Scholar]
  • 11.Chinarov V.A., Gaididei Y.B., Kharkyanen V.N., Sit'ko S.P. Ion pores in biological membranes as self-organized bistable systems. Phys. Rev. A. 1992;46:5232–5241. doi: 10.1103/physreva.46.5232. [DOI] [PubMed] [Google Scholar]
  • 12.Kharkyanen, V.N., Panchouk, A.S. and Weinreb, G.E.: Self-organization effects induced by ion-conformational interaction in biomembrane channels, J. Biol. Phys.19, 259–272.

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES