Abstract
A query learning algorithm based on hidden Markov models (HMMs) isdeveloped to design experiments for string analysis and prediction of MHCclass I binding peptides. Query learning is introduced to aim at reducingthe number of peptide binding data for training of HMMs. A multiple numberof HMMs, which will collectively serve as a committee, are trained withbinding data and used for prediction in real-number values. The universeof peptides is randomly sampled and subjected to judgement by the HMMs.Peptides whose prediction is least consistent among committee HMMs aretested by experiment. By iterating the feedback cycle of computationalanalysis and experiment the most wanted information is effectivelyextracted. After 7 rounds of active learning with 181 peptides in all,predictive performance of the algorithm surpassed the so far bestperforming matrix based prediction. Moreover, by combining the bothmethods binder peptides (log Kd < -6) could be predicted with84% accuracy. Parameter distribution of the HMMs that can be inspectedvisually after training further offers a glimpse of dynamic specificity ofthe MHC molecules.
Keywords: algorithm, binding, experimental design, MHC class I molecules, peptides, prediction, query learning, specificity, string analysis
Full Text
The Full Text of this article is available as a PDF (126.0 KB).
References
- 1.Falk K., Roetzschke O., Stevanovic S., Jung G., Rammensee H. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351:290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- 2.Rammensee H., Friede T., Stevanovic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41:178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
- 3.Ruppert J., et al. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell. 1993;74:929–937. doi: 10.1016/0092-8674(93)90472-3. [DOI] [PubMed] [Google Scholar]
- 4.Parker K., Bednarek M., Je C. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 1994;152:163–175. [PubMed] [Google Scholar]
- 5.Hammer J., et al. Precise prediction of MHC class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 1994;180:2353–2358. doi: 10.1084/jem.180.6.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Stryhn A., et al. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. Eur. J. Immunol. 1996;26:1911–1918. doi: 10.1002/eji.1830260836. [DOI] [PubMed] [Google Scholar]
- 7.Udaka K., Wiesmuller K.-H., Kienle S., Jung G., Walden P. Tolerance to amino acid variations in peptides binding to the MHC class I protein H-2Kb. J. Biol. Chem. 1995;270:24130–24134. doi: 10.1074/jbc.270.41.24130. [DOI] [PubMed] [Google Scholar]
- 8.Udaka K., Wiesmueller K.-H., Kienle S., Jung G., Walden P. Decrypting the structure of MHC-I restricted CTL epitopes with complex peptide libraries. J. Exp. Med. 1995;181:2097–2108. doi: 10.1084/jem.181.6.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Brusic, V., Schoenbach, C., Takiguchi, M., Ciesielski, V. and Harrison, L.: Application of genetic search in derivation of matrix models of peptide binding to MHC molecules, ISMB (1997), 75–83. [PubMed]
- 10.Gulukota K., Sidney J., Sette A., DeLisi C. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 1997;267:1258–1267. doi: 10.1006/jmbi.1997.0937. [DOI] [PubMed] [Google Scholar]
- 11.Honeyman M., Brusic V., Stone N., Harrison L. Neural network-based prediction of candidate T-cell epitopes. Nat. Biotechnol. 1998;16:966–969. doi: 10.1038/nbt1098-966. [DOI] [PubMed] [Google Scholar]
- 12.Rammensee H., Bachmann J., Emmerich N., Bachor 0., Stevanovic S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 1999;50:213–219. doi: 10.1007/s002510050595. [DOI] [PubMed] [Google Scholar]
- 13.Andersen M., et al. Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens. 2000;55:519–531. doi: 10.1034/j.1399-0039.2000.550603.x. [DOI] [PubMed] [Google Scholar]
- 14.Udaka K., et al. An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics. 2000;51:816–828. doi: 10.1007/s002510000217. [DOI] [PubMed] [Google Scholar]
- 15.Madden D., Garboczi D., Wiley D. The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides by HLA-A2. Cell. 1993;75:693–708. doi: 10.1016/0092-8674(93)90490-h. [DOI] [PubMed] [Google Scholar]
- 16.Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of Hidden Markov Models. Proteins. 1998;33:460–474. doi: 10.1002/(sici)1097-0134(19981201)33:4<460::aid-prot2>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- 17.Brusic V., Rudy G., Honeyman M., Hammer J., Harrison L. Prediction of MHC class IIbinding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics. 1998;14:121–130. doi: 10.1093/bioinformatics/14.2.121. [DOI] [PubMed] [Google Scholar]
- 18.Brusic V., Rudy G., Kyne A., Harrison L. MHCPEP – A database of MHC-binding peptides: update 1995. Nucl. Acids Res. 1996;24:242–244. doi: 10.1093/nar/24.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Abe N., Mamitsuka H. In the fifteenth international conference on machine learning. Madison, Wisconsin: Morgan Kaufmann; 1998. [Google Scholar]
- 20.Mamitsuka H., Abe N. In the seventeenth international conference on machine learning. Stanford, Ca.: Morgan Kaufmann; 2000. [Google Scholar]
- 21.Baldi P., Chauvin Y., Hunkapiler T., McClure M.A. HiddenMarkov models of biological primary sequence information. Proc. Natl. Acad. Sci. USA. 1994;91:1059–1063. doi: 10.1073/pnas.91.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Krogh A., Brown M., Mian I.S., Sjolander K., Haussler D. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 1994;235:1501–1531. doi: 10.1006/jmbi.1994.1104. [DOI] [PubMed] [Google Scholar]
- 23.Park J., et al. Sequence comparisons using multiple sequences detect twice as many remote homologues as pairwise methods. J. Mol. Biol. 1998;284:1201–1210. doi: 10.1006/jmbi.1998.2221. [DOI] [PubMed] [Google Scholar]
- 24.Krogh A., I.S M., D H. A hidden Markov model that finds genes. E. coli DNA, Nucl. Acids Res. 1994;22:4768–4778. doi: 10.1093/nar/22.22.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Kearns M., Vazirani U. An introduction to computational learning theory. Cambridge, Ma.: MIT Press; 1994. [Google Scholar]
- 26.Mamitsuka H. A learning method of hidden Markov Models for sequence discrimination. J. Comput. Biol. 1996;3:361–363. doi: 10.1089/cmb.1996.3.361. [DOI] [PubMed] [Google Scholar]
