Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(1):106–107. doi: 10.1073/pnas.79.1.106

Energy-filtered transmission electron microscopy of ferritin.

H Shuman, A P Somlyo
PMCID: PMC345670  PMID: 6948295

Abstract

The focusing properties of a magnetic-sector spectrometer are shown to be suitable for forming high-spatial-resolution, energy-filtered transmission electron microscope images. Filtered images of ferritin molecules by using electrons scattered from the characteristic iron M2,3 and carbon K absorption edges clearly distinguish the 75-A iron core and 120-A protein shell. The minimum detectable mass is estimated to be 0.84 X 10(-20) g for Fe for an electron dose of 18 C/cm2 and 99% confidence.

Full text

PDF
106

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Egerton R. F. Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy. 1978;3(2):243–251. doi: 10.1016/s0304-3991(78)80031-x. [DOI] [PubMed] [Google Scholar]
  2. Hainfeld J., Isaacson M. The use of electron energy loss spectroscopy for studying membrane architecture: a preliminary report. Ultramicroscopy. 1978;3(1):87–95. doi: 10.1016/s0304-3991(78)80011-4. [DOI] [PubMed] [Google Scholar]
  3. Isaacson M. S., Crewe A. V. Electron microspectroscopy. Annu Rev Biophys Bioeng. 1975;4(00):165–184. doi: 10.1146/annurev.bb.04.060175.001121. [DOI] [PubMed] [Google Scholar]
  4. Isaacson M. The microanalysis of light elements using transmitted energy loss electrons. Ultramicroscopy. 1975 Jul;1(1):33–52. doi: 10.1016/s0304-3991(75)80006-4. [DOI] [PubMed] [Google Scholar]
  5. Massover W. H. The ultrastructure of ferritin macromolecules. III. Mineralized iron in ferritin is attached to the protein shell. J Mol Biol. 1978 Aug 25;123(4):721–726. doi: 10.1016/0022-2836(78)90218-8. [DOI] [PubMed] [Google Scholar]
  6. Shuman H. Correction of the second-order aberrations of uniform field magnetic sectors. Ultramicroscopy. 1980;5(1):45–53. doi: 10.1016/0304-3991(80)90010-8. [DOI] [PubMed] [Google Scholar]
  7. Shuman H. Parallel recording of electron energy loss spectra. Ultramicroscopy. 1981;6(2):163–167. doi: 10.1016/0304-3991(81)90056-5. [DOI] [PubMed] [Google Scholar]
  8. Shuman H., Somlyo A. P. Electron probe x-ray analysis of single ferritin molecules. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1193–1195. doi: 10.1073/pnas.73.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Somlyo A. P., Somlyo A. V., Shuman H., Stewart M. Electron probe analysis of muscle and X-ray mapping of biological specimens with a field emission gun. Scan Electron Microsc. 1979;(2):711–722. [PubMed] [Google Scholar]
  10. Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stewart M., Somlyo A. P., Somlyo A. V., Shuman H., Lindsay J. A., Murrell W. G. Distribution of calcium and other elements in cryosectioned Bacillus cereus T spores, determined by high-resolution scanning electron probe x-ray microanalysis. J Bacteriol. 1980 Jul;143(1):481–491. doi: 10.1128/jb.143.1.481-491.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES