Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(1):108–112. doi: 10.1073/pnas.79.1.108

Characterization of pro-opiocortin-converting activity in purified secretory granules from rat pituitary neurointermediate lobe.

Y P Loh, H Gainer
PMCID: PMC345671  PMID: 6275379

Abstract

Lysates of secretory granules from rat pituitary neurointermediate lobes were incubated with [3H]arginine- or [3H]phenylalanine-labeled toad pro-opiocortin. The processed products formed were identified by immunoprecipitation with adrenocorticotropin (ACTH) and endorphin antisera and by migration behavior on acid/urea/polyacrylamide gels. Pro-opiocortin was cleaved by the proteolytic activity in the secretory granule fraction to approximately 21,000 Mr ACTH, approximately 13,000 Mr ACTH, alpha-melanotropin, 16,000 Mr NH2-terminal glycopeptide, beta-lipotropin, and an endorphin-related peptide. Characterization of this pro-opiocortin-converting activity shows that it (i) is present in membrane and soluble fractions of the granule lysates, (ii) has a pH optimum of 5.0, (iii) appears to cleave at pairs of basic amino acid residues in the precursor, and (iv) is inhibited by leupeptin, pepstatin A, and p-chloromercuribenzoate but not diisopropyl fluorophosphate, N alpha-p-tosyl-L-lysine chloromethyl ketone hydrochloride, chloroquine, or EDTA. These inhibitor studies suggest that the converting-enzyme activity is due to an acid thiol, arginyl protease, distinct from any known cathepsin B-like activity.

Full text

PDF
108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crine P., Gossard F., Seidah N. G., Blanchette L., Lis M., Chrétien M. Concomitant synthesis of beta-endorphin and alpha-melanotropin from two forms of pro-opiomelanocortin in the rat pars intermedia. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5085–5089. doi: 10.1073/pnas.76.10.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis R. H., Copenhaver J. H., Carver M. J. Characterization of acidic proteins in cell nuclei from rat brain by high-resolution acrylamide gel electrophoresis. J Neurochem. 1972 Feb;19(2):473–477. doi: 10.1111/j.1471-4159.1972.tb01356.x. [DOI] [PubMed] [Google Scholar]
  3. Eipper B. A., Mains R. E., Guenzi D. High molecular weight forms of adrenocorticotropic hormone are glycoproteins. J Biol Chem. 1976 Jul 10;251(13):4121–4126. [PubMed] [Google Scholar]
  4. Fletcher D. J., Noe B. D., Bauer G. E., Quigley J. P. Characterization of the conversion of a somatostatin precursor to somatostatin by islet secretory granules. Diabetes. 1980 Aug;29(8):593–599. doi: 10.2337/diab.29.8.593. [DOI] [PubMed] [Google Scholar]
  5. Fletcher D. J., Quigley J. P., Bauer G. E., Noe B. D. Characterization of proinsulin- and proglucagon-converting activities in isolated islet secretory granules. J Cell Biol. 1981 Aug;90(2):312–322. doi: 10.1083/jcb.90.2.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gainer H., Sarne Y., Brownstein M. J. Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. J Cell Biol. 1977 May;73(2):366–381. doi: 10.1083/jcb.73.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glas P., Astrup T. Thromboplastin and plasminogen activator in tissues of the rabbit. Am J Physiol. 1970 Oct;219(4):1140–1146. doi: 10.1152/ajplegacy.1970.219.4.1140. [DOI] [PubMed] [Google Scholar]
  8. Gumbiner B., Kelly R. B. Secretory granules of an anterior pituitary cell line, AtT-20, contain only mature forms of corticotropin and beta-lipotropin. Proc Natl Acad Sci U S A. 1981 Jan;78(1):318–322. doi: 10.1073/pnas.78.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hinman M. B., Herbert E. Processing of the precursor to adrenocorticotrophic hormone and beta-lipotropin in monolayer cultures of mouse anterior pituitary. Biochemistry. 1980 Nov 11;19(23):5395–5402. doi: 10.1021/bi00564a038. [DOI] [PubMed] [Google Scholar]
  10. Johnson R. G., Scarpa A. Internal pH of isolated chromaffin vesicles. J Biol Chem. 1976 Apr 10;251(7):2189–2191. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Loh Y. P., Gainer H. The role of the carbohydrate in the stabilization, processing, and packaging of the glycosylated adrenocorticotropin-endorphin common precursor in toad pituitaries. Endocrinology. 1979 Aug;105(2):474–487. doi: 10.1210/endo-105-2-474. [DOI] [PubMed] [Google Scholar]
  14. Loh Y. P. Immunological evidence for two common precursors to corticotropins, endorphins, and melanotropin in the neurointermediate lobe of the toad pituitary. Proc Natl Acad Sci U S A. 1979 Feb;76(2):796–800. doi: 10.1073/pnas.76.2.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loh Y. P., Jenks B. G. Evidence for two different turnover pools of adrenocorticotropin, alpha-melanocyte-stimulating hormone, and endorphin-related peptides released by the frog pituitary neurointermediate lobe. Endocrinology. 1981 Jul;109(1):54–61. doi: 10.1210/endo-109-1-54. [DOI] [PubMed] [Google Scholar]
  16. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mains R. E., Eipper B. A. Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells. J Biol Chem. 1979 Aug 25;254(16):7885–7894. [PubMed] [Google Scholar]
  18. Munemura M., Eskay R. L., Kebabian J. W. Release of alpha-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: involvement of catecholamines and adenosine 3',5'-monophosphate. Endocrinology. 1980 Jun;106(6):1795–1803. doi: 10.1210/endo-106-6-1795. [DOI] [PubMed] [Google Scholar]
  19. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  20. Pollard H. B., Pazoles C. J., Creutz C. E., Zinder O. The chromaffin granule and possible mechanisms of exocytosis. Int Rev Cytol. 1979;58:159–197. doi: 10.1016/s0074-7696(08)61475-8. [DOI] [PubMed] [Google Scholar]
  21. Roberts J. L., Phillips M., Rosa P. A., Herbert E. Steps involved in the processing of common precursor forms of adrenocorticotropin and endorphin in cultures of mouse pituitary cells. Biochemistry. 1978 Aug 22;17(17):3609–3618. doi: 10.1021/bi00610a030. [DOI] [PubMed] [Google Scholar]
  22. Russell J. T., Brownstein M. J., Gainer H. Biosynthesis of vasopressin, oxytocin, and neurophysins: isolation and characterization of two common precursors (propressophysin and prooxyphysin). Endocrinology. 1980 Dec;107(6):1880–1891. doi: 10.1210/endo-107-6-1880. [DOI] [PubMed] [Google Scholar]
  23. Russell J. T., Holz R. W. Measurement of delta pH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J Biol Chem. 1981 Jun 25;256(12):5950–5953. [PubMed] [Google Scholar]
  24. Russell J. T. The isolation of purified neurosecretory vesicles from bovine neurohypophysis using isoosmolar density gradients. Anal Biochem. 1981 May 15;113(2):229–238. doi: 10.1016/0003-2697(81)90071-3. [DOI] [PubMed] [Google Scholar]
  25. Russell J. T., Thorn N. A. Adenosine triphosphate dependent calcium uptake by subcellular fractions from bovine neurohypophyses. Acta Physiol Scand. 1975 Mar;93(3):364–377. doi: 10.1111/j.1748-1716.1975.tb05825.x. [DOI] [PubMed] [Google Scholar]
  26. Scott A. P., Ratcliffe J. G., Rees L. H., Landon J., Bennett H. P., Lowry P. J., McMartin C. Pituitary peptide. Nat New Biol. 1973 Jul 18;244(133):65–67. doi: 10.1038/newbio244065a0. [DOI] [PubMed] [Google Scholar]
  27. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  28. Wibo M., Poole B. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B1. J Cell Biol. 1974 Nov;63(2 Pt 1):430–440. doi: 10.1083/jcb.63.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES