Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2000 Sep;26(3):185–202. doi: 10.1023/A:1010322406831

Random Stride Intervals with Memory

Lori Griffin 1, Damien J West 2, Bruce J West 1,3
PMCID: PMC3456753  PMID: 23345721

Abstract

The stride interval in normal human gait is not strictly constant, butfluctuates from step to step in a random manner. Herein we show thatcontrary to the traditional assumption of uncorrelated random errors,these fluctuations have long-time memory. However, rather than being amonofractal process as found earlier, there exists a multiplicative timescale that characterizes the process in addition to the fractal dimension.Further, these long-time correlations are interpreted in terms of anallometric control process.

Keywords: Stride interval

Full Text

The Full Text of this article is available as a PDF (126.6 KB).

References

  • 1.Ueber das Gehen des Menschen in Gesunden und Kranken Zustaenden nach Selbstregistrireden Methoden. Germany: Tuebigen; 1881. [Google Scholar]
  • 2.Hausdorff J.M., Peng C.-K., Ladin Z., Wei J.Y., Goldberger A.L. Is walking a random walk? Evidence for long-range correlations in stride interval of human gait. J. Appl. Physiol. 1995;78:349–358. doi: 10.1152/jappl.1995.78.1.349. [DOI] [PubMed] [Google Scholar]
  • 3.Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.-K., Cudkowicz, M.E., Wei, M.E. and Goldberger, A.L.: Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease, J. Appl. Physiol.82 (1997). [DOI] [PubMed]
  • 4.West B.J., Griffin L. Allometric Control, Inverse Power Laws and Human Gait. Chaos, Solitons & Fractals. 1999;10:1519–1527. [Google Scholar]
  • 5.West B.J., Griffin L. Fractals. 1998;6:101–108. [Google Scholar]
  • 6.Griffin, L.: Allometric Control of Human Gait, PhD Thesis, unpublished, 1999.
  • 7.Feder J. Fractals. New York: Plenum Press; 1988. [Google Scholar]
  • 8.Bassingthwaighte J.B., Liebovitch L., West B.J. Fractal Physiology. New York: Oxford University Press; 1994. [Google Scholar]
  • 9.West B.J. Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails. Singapore: World Scientific; 1999. [Google Scholar]
  • 10.van Beek J.H.G.M., Roger S., Bassingthwaighte J.B. Regional myocaardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 1989;257:H167080. doi: 10.1152/ajpheart.1989.257.5.H1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Montroll E.W., Shlesinger M.F. On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci. 1982;79:337. doi: 10.1073/pnas.79.10.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J.E. Testing for nonlinearity in time series: the method of surrogate data. Physica D. 1992;75:190–208. [Google Scholar]
  • 13.Liebovitch L.S., Todorov A.T. Invited Editorial on Fractal dynamics of human gait; stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 1996;80(5):1446–1447. doi: 10.1152/jappl.1996.80.5.1446. [DOI] [PubMed] [Google Scholar]
  • 14.Shlesinger M.F., West B.J. Phys. Rev. Lett. 1991;67:2106. doi: 10.1103/PhysRevLett.67.2106. [DOI] [PubMed] [Google Scholar]
  • 15.Sornette D. Discrete-scale invariance and complex dimensions. Phys. Rep. 1998;197:239–270. [Google Scholar]
  • 16.Jörgi P., Sornette D., Blank M. Fine structure and complex exponents in power-law distributions from random maps. Phys. Rev. 1998;57:120–134. [Google Scholar]
  • 17.West B.J., Goldberger A.L. Physiology in Fractal Dimensions. Am. Sci. 1987;75:795–819. [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES