Abstract
There are many speculations about the dynamic transition observed in hydrated bio-polymers at temperatures T ∼ 200 – 230 K being an important factor for enabling of their functions. The transition shows up as a sharp increase of atomic mean-squared displacements above this temperature. The nature of the dynamic transition is not yet clear. Using inelastic neutron scattering we show in this Note that the transition in DNA is related to the appearance of a slow relaxation process. Decrease in the hydration level suppresses the process and the dynamic transition. It is found that, in terms of dynamics, the decrease in water content is similar in effect to a decrease in temperature. The obtained results support the idea that the dynamic transition is mediated by the water of hydration since bulk water has a dynamic transition around the same temperature.
Full Text
The Full Text of this article is available as a PDF (179.9 KB).
References
- 1.Nienhaus G.U., Mourant J.R., Frauenfelder H. Spectroscopic evidence for conformational relaxation in myoglobin. Proc.Natl.Acad.Sci.USA. 1992;89:2902–2906. doi: 10.1073/pnas.89.7.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Post F., Doster W., Karvounis G., Settles M. Structural relaxation and nonexponetial kinetics of CO-binding to horse myoglobin. Biophys.J. 1993;64:1833–1842. doi: 10.1016/S0006-3495(93)81554-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Rasmussen B.F., Stock A.M., Ringe D., Petsko G.A. Crystalline ribonuclease-A loses function below the dynamic transition at 220-K. Nature. 1992;357:423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
- 4.Parak F., et al. Evidence for a correlation between the photoinduced electron-transfer and dynamic properties of the chromophore membranes from rhodospirillum-rubrum. FEBS Lett. 1980;117:368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
- 5.Doster W., Cusak S., Petry W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature. 1989;337:754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
- 6.Rupprecht A. Wet spinning apparatus and auxiliary equipment suitable for preparing samples of oriented DNA. Biotechnol. Bioeng. 1970;12:93–121. doi: 10.1002/bit.260120109. [DOI] [PubMed] [Google Scholar]
- 7.Grimm H., Rupprecht A. Low frequency dynamics of DNA. Physica B. 1997;234–236:183–187. [Google Scholar]
- 8.Ferrand M., Dianoux A.J., Petry W., Zaccai G. Thermal motions and functions of bacteriorhodopsin in purple membranes–effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. USA. 1993;90:9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Rudisser S., et al. Enthalpy, Entropy, and Structural Relaxation Behaviors of A-and B-DNA in their Vitrified States and the Effect of Water on the Dynamics of B-DNA. J. Phys. Chem. 1997;101:266–277. [Google Scholar]
- 10.Mashimo S., et al. Dielectric study on dynamics and structure of water bound to DNA using a frequency range 107-1010 Hz. J. Phys. Chem. 1989;93:4963–4967. [Google Scholar]
- 11.Lee S.A., et al. Brillouin-scattering study of the hydration of Li-DNA and Na-DNA films. Biopolymers. 1987;26:1637–1665. doi: 10.1002/bip.360261002. [DOI] [PubMed] [Google Scholar]
- 12.Hogan M.E., Jardetzky O. Internal motions in DNA. Proc. Natl. Acad. Sci. USA. 1979;76:6341–6345. doi: 10.1073/pnas.76.12.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Sokolov A.P., Grimm H., Kahn R. Glassy dynamics in DNA: Ruled by water of hydration? J. Chem. Phys. 1999;110:7053–7057. [Google Scholar]
- 14.Sokolov A.P., Hurst J., Quitmann D. Dynamics of supercooled water: Mode-coupling theory approach. Phys. Rev. B. 1995;51:12865–12868. doi: 10.1103/physrevb.51.12865. [DOI] [PubMed] [Google Scholar]