Skip to main content
Journal of the American Aging Association logoLink to Journal of the American Aging Association
. 2003 Jan;26(1-2):19–28. doi: 10.1007/s11357-003-0003-x

Copper deficiency: A potential model for determining the role of mitochondria in cardiac aging

W Thomas Johnson 1,2,, Samuel M Newman Jr 1
PMCID: PMC3456815  PMID: 23604915

Abstract

Heart mitochondria experience age-related declines in cytochrome c oxidase (CCO) activity and increases in the generation of reactive oxygen species (ROS) that may contribute to loss of cardiac function and the development of disease that occur with advancing age. In a manner similar to aging, copper deficiency also suppresses heart CCO activity and has cardiovascular consequences related to increased peroxidation. Food restriction is often used as a tool to study oxidative mechanisms of aging and the present study examines the potential of copper deficiency to model the role of mitochondria in cardiac aging by determining if the effect of food restriction on CCO activity and oxidative stress in heart mitochondria parallels its effect on cardiac mitochondria during aging. Overall, copper deficiency severely inhibited CCO activity and increased both Mn superoxide dismutase (MnSOD) and glutathione peroxidase (GPX) in isolated heart mitochondria. However, a 20% reduction in food intake by copper-deficient rats increased CCO activity by 65% and decreased MnSOD activity by 25% but had no effect in rats fed adequate copper. Copper deficiency also reduced the carbonyl content of 80–100 kDa mitochondrial proteins, but the reduction in carbonyl content was unaffected by food restriction. Food restriction did, however, completely prevent the enlargement of cardiac mitochondria in copper-deficient rats. Together, these findings indicate that copper deficiency induces mitochondrial antioxidant enzyme activity and hypertrophy in cardiac tissue in response to reduced CCO activity and that food restriction may counteract these changes by reducing oxidative stress. Because the action of food restriction on CCO activity and mitochondrially generated oxidative stress are similar in copper deficiency and aging, copper deficiency may serve as a short-term model for studying the potential roles of mitochondria in cardiac aging.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Footnotes

The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/ affirmative action employer and all agency services are available without discrimination.

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

References

  • 1.Beckman K.B., Ames B.N. The free radical theory of aging matures. Physiol. Rev. 1998;78:5471–581. doi: 10.1152/physrev.1998.78.2.547. [DOI] [PubMed] [Google Scholar]
  • 2.Sohal R.S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273:59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Halliwell B., Gutteridge J.M.C. Free radicals in biology and medicine. 2nd edition. New York: Oxford University Press; 1989. pp. 416–508. [Google Scholar]
  • 5.Balevska P.S., Russnov E.M., Kassabova T.A. Studies on lipid peroxidation in rat liver by copper deficiency. Int. J. Biochem. 1981;13:489–493. doi: 10.1016/0020-711X(81)90122-1. [DOI] [PubMed] [Google Scholar]
  • 6.Paynter D.I. The role of dietary copper, manganese, selenium, and vitamin E in lipid peroxidation in tissues of the rat. Biol. Trace Elem. Res. 1980;2:121–135. doi: 10.1007/BF02798591. [DOI] [PubMed] [Google Scholar]
  • 7.Fields M., Ferretti J., Smith J.C., Reiser S. Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues. Biol. Trace Elem. Res. 1984;6:379–391. doi: 10.1007/BF02989255. [DOI] [PubMed] [Google Scholar]
  • 8.Saari J.T., Dickerson F.B., Habib M.P. Ethane production in copper-deficient rats. Proc. Soc. Exp. Biol. Med. 1990;195:30–33. doi: 10.3181/00379727-195-43114. [DOI] [PubMed] [Google Scholar]
  • 9.Rao G., Xia E., Nadakavukaren M.J., Richardson A. Effect of dietary restriction on the age-dependent changes in the expression of anti-oxidant enzymes in rat liver. J. Nutr. 1990;120:602–609. doi: 10.1093/jn/120.6.602. [DOI] [PubMed] [Google Scholar]
  • 10.Taylor C.G., Bettger W.J., Bray T.M. Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. J. Nutr. 1988;118:613–621. doi: 10.1093/jn/118.5.613. [DOI] [PubMed] [Google Scholar]
  • 11.Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sohal R.S. Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Radical Biol. Med. 1993;14:583–588. doi: 10.1016/0891-5849(93)90139-L. [DOI] [PubMed] [Google Scholar]
  • 13.Boffoli D., Scacco S.C., Vergari R., Solarino G., Santacroce G., Papa S. Decline with age of the respiratory chain activity in human skeletal muscle. Biochim. Biophys. Acta. 1994;1226:73–82. doi: 10.1016/0925-4439(94)90061-2. [DOI] [PubMed] [Google Scholar]
  • 14.Desai V.G., Weindruch R., Hart R.W., Feuers R.J. Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch. Biochem. Biophys. 1996;333:145–151. doi: 10.1006/abbi.1996.0375. [DOI] [PubMed] [Google Scholar]
  • 15.Müller-Höcker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart-an age-related phenomenon. Am. J. Pathol. 1989;134:1167–1173. [PMC free article] [PubMed] [Google Scholar]
  • 16.Paradies G., Ruggiero F.M., Petosillo G., Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Let. 1997;406:136–138. doi: 10.1016/S0014-5793(97)00264-0. [DOI] [PubMed] [Google Scholar]
  • 17.Prohaska J.R. Changes in tissue growth, concentration of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice. J. Nutr. 1983;113:2048–2058. doi: 10.1093/jn/113.10.2048. [DOI] [PubMed] [Google Scholar]
  • 18.Prohaska J.R. Changes in Cu,Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase, and glutathione transferase in copper-deficient mice and rats. J. Nutr. 1991;121:255–363. doi: 10.1093/jn/121.3.355. [DOI] [PubMed] [Google Scholar]
  • 19.Johnson W.T., Dufault S.N., Thomas A.C. Platelet cytochrome c oxidase as an indicator of copper status in rats. Nut. Res. 1993;13:1153–1162. [Google Scholar]
  • 20.Singal P.K., Khaper N., Palace V., Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovascular Res. 1998;40:426–432. doi: 10.1016/S0008-6363(98)00244-2. [DOI] [PubMed] [Google Scholar]
  • 21.Saari J.T. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can. J. Physiol. Pharmacol. 2000;78:848–855. doi: 10.1139/cjpp-78-10-848. [DOI] [PubMed] [Google Scholar]
  • 22.Gredilla, R., Sanz, A., Lopez-Torres, M., and Barja, G. Caloric restriction decreases mitochondrial free radical generation and lowers oxidative damage to mitochondria in rat heart. FASEB J. 10.1096/fj.00-0764fje, May 9, 2001 [DOI] [PubMed]
  • 23.Johnson W.T., Kramer T.R. Effect of copper deficiency on erythrocyte membranes of rats. J. Nutr. 1987;117:1085–109. doi: 10.1093/jn/117.6.1085. [DOI] [PubMed] [Google Scholar]
  • 24.Bode B.M., Miller L.A., Faber J., Saari J.T. Mitochondrial respiration in heart, liver, and kidney of copper-deficient rats. J. Nutr. Biochem. 1992;3:668–672. doi: 10.1016/0955-2863(92)90088-Z. [DOI] [Google Scholar]
  • 25.Smith P.K., Krohn I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C. Measurement of protein using bichinchoninic acid. Anal. Biochem. 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  • 26.Prohaska J.R., Wells W.W. Copper deficiency in the developing rat brain: A possible model for Menkes’ Steely-Hair Disease. J. Neurochem. 1974;23:91–98. doi: 10.1111/j.1471-4159.1974.tb06920.x. [DOI] [PubMed] [Google Scholar]
  • 27.Paglia D.E., Valentine W.E. Studies on the qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. [PubMed] [Google Scholar]
  • 28.Chaudiere J., Wilhelmsen E.C., Tappel A.L. Mechanism of selenium-dependent glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J. Biol. Chem. 1984;259:1043–1050. [PubMed] [Google Scholar]
  • 29.Marklund S., Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974;47:469–474. doi: 10.1111/j.1432-1033.1974.tb03714.x. [DOI] [PubMed] [Google Scholar]
  • 30.Shacter E., Williams J.A., Lim M., Levine R.L. Differential susceptibility of plasma proteins to oxidative modification: Examination by Western blot immunoassay. Free Radical Biol. Med. 1994;17:429–437. doi: 10.1016/0891-5849(94)90169-4. [DOI] [PubMed] [Google Scholar]
  • 31.Venable J.H., Coggeshall R. A simplified lead acetate stain for use in electron microscopy. J. Cell Biol. 1965;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Aheme W.A., Dunnill M.S. Morphology. London: Edward Arnold Pub. Ltd.; 1982. [Google Scholar]
  • 33.Warner B.B., Stuart L., Gebb S., Wispé J.R. Redox regulation of manganese superoxide. Am. J. Physiol. 1996;271:L150–L158. doi: 10.1152/ajplung.1996.271.1.L150. [DOI] [PubMed] [Google Scholar]
  • 34.Wan X.S., St. Clair D.K. Thiol-modulating agents increase manganese superoxide dismutase activity in human lung fibroblasts. Arch. Biochem. Biophys. 1993;304:89–93. doi: 10.1006/abbi.1993.1325. [DOI] [PubMed] [Google Scholar]
  • 35.Sohal R.S., Ku H.H., Agarwal S., Forester M. J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Devel. 1994;74:121–133. doi: 10.1016/0047-6374(94)90104-X. [DOI] [PubMed] [Google Scholar]
  • 36.Brambilla L., Cairo G., Sestili P., O’Donnel V., Azzi A., Cantoni O. Mitochondrial respiratory chain deficiency leads to overexpression of antioxidant enzymes. FEBS Lett. 1997;418:247–250. doi: 10.1016/S0014-5793(97)01393-8. [DOI] [PubMed] [Google Scholar]
  • 37.Desai V.G., Aidoo A., Li J., Lyn-Cook L.E., Casciano D.A., Feurs R.J. Effects of bleomycin on liver antioxidant enzymes and the electron transport system from ad libitum-fed and dietary restricted female and male Fischer 344 rats. Nutr. Cancer. 2000;36:42–51. doi: 10.1207/S15327914NC3601_7. [DOI] [PubMed] [Google Scholar]
  • 38.Berlett, BS, and Stadtman, ER: Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 272:20313–20316, 1997. [DOI] [PubMed]
  • 39.Richter C., Godvadze V., Laffranchi R., Schlapbach R., Schweizer M., Suter M., Walter P., Yaffee M. Oxidants in mitochondria: From physiology to diseases. Biochim. Biophys. Acta. 1995;1271:67–74. doi: 10.1016/0925-4439(95)00012-s. [DOI] [PubMed] [Google Scholar]
  • 40.Saari J.T., Johnson W.T., Reeves P.G., Johnson L.K. Amelioration of effects of severe dietary copper deficiency by food restriction in rats. Am. J. Clin. Nutr. 1993;58:891–896. doi: 10.1093/ajcn/58.6.891. [DOI] [PubMed] [Google Scholar]
  • 41.Medeiros D.M., Shiry L., Lincoln A.J., Prochaska L.J. Cardiac nonmyofibrillar proteins in copper-deficient rats. Biol. Trace. Elem. Res. 1993;36:271–282. [Google Scholar]
  • 42.Chao J.C.J., Mederios D.M., Davidson J., Shiry L. Low levels of ATP synthase and cytochrome c oxidase subunit peptide from hearts of copper-deficient rats are not altered by the administration of dimethyl sulfoxide. J. Nutr. 1994;124:789–803. doi: 10.1093/jn/124.6.789. [DOI] [PubMed] [Google Scholar]
  • 43.Lee J., Yu B.P., Herlihy J.T. Modulation of cardiac mitochondrial membrane fluidity by age and calorie intake. Free Radic. Biol. Med. 1999;26:260–265. doi: 10.1016/S0891-5849(98)00195-6. [DOI] [PubMed] [Google Scholar]
  • 44.Balevska P.S., Russanov E.M., Stanchev P.I. Copper deficiency-induced changes in the fatty acid composition of mitochondrial and microsomal membranes of rat liver. Biol. Trace Elem. Res. 1985;8:211–218. doi: 10.1007/BF02917460. [DOI] [PubMed] [Google Scholar]
  • 45.Lawrence C.B., Davies N.T., Mills C.F., Nicol F. Studies on the effects of copper deficiency on rat liver mitochondria. I. Changes in mitochondrial composition. Biochim. Biophys. Acta. 1985;809:351–361. doi: 10.1016/0005-2728(85)90185-9. [DOI] [PubMed] [Google Scholar]
  • 46.Dallman P.R., Goodman J.R. Enlargement of mitochondrial compartment in iron and copper deficiency. Blood. 1970;35:496–505. [PubMed] [Google Scholar]
  • 47.Medeiros D.M., Bagby D., Ovecka G., McCormick R. Myofibrillar, mitochondrial and valvular morphological alterations in cardiac hypertrophy among copper-deficient rats. J. Nutr. 1991;121:815–824. doi: 10.1093/jn/121.6.815. [DOI] [PubMed] [Google Scholar]
  • 48.Wildman R.E.C., Medeiros, DM, Jenkins J. Comparative aspects of cardiac ultrastructure, morphometry, and electrocardiography of hearts from rats fed restricted dietary copper and selenium. Biol. Trace. Elem. Res. 1994;46:51–66. doi: 10.1007/BF02790067. [DOI] [PubMed] [Google Scholar]
  • 49.Wildman R.E.C., Medeiros D.M., McCoy E. Cardiac changes with dietary copper, iron, or selenium restriction: Organelle and basal laminae aberrations, decreased ventricular function, and altered gross morphometry. J. Trace Elem. Exp. Biol. Med. 1995;8:11–27. [Google Scholar]
  • 50.Ghadially F.N. Mitochondria, in Vol I, Ultrastructural Pathology of the Cell and Matrix: A Text and Atlas of Physiological and Pathological Alterations in the Fine Structure of Cellular and Extra-cellular Components. 3rd ed. Boston: Butterworth; 1988. pp. 254–258. [Google Scholar]

Articles from Journal of the American Aging Association are provided here courtesy of American Aging Association

RESOURCES