Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(1):166–170. doi: 10.1073/pnas.79.1.166

Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia I-B4 isolectin.

D E Maddox, S Shibata, I J Goldstein
PMCID: PMC345683  PMID: 6798567

Abstract

This paper presents data on reactions of murine macrophages with a variety of lectins, with special focus on Griffonia simplicifolia I-B4 isolectin, the only lectin we tried that distinguishes stimulated macrophages from resident populations. Specificity of Griffonia simplicifolia I reaction with carbohydrate determinants at the cell surface is shown by (i) ability of alpha-galactosidase treatment of intact cells to abolish all lectin binding whereas beta-galactosidase has no effect on lectin binding, (ii) ability of methyl alpha-D-galactopyranoside to completely inhibit lectin binding with methyl alpha-D-galactopyranoside having no effect on lectin binding, (iii) ability of brief treatment of intact cells with trypsin to liberate a glycopeptide but reacts with G. simplicifolia I to form a precipitate that is dissolved by addition of methyl-alpha-D-galactopyranoside or alpha-galactosidase, (iv) ability of methyl alpha-D-galactopyranoside (but no other monosaccharide) to completely inhibit avid binding of macrophages to G. simplicifolia I lectin immobilized on an insoluble support, and (v) ability of immobilized lectin to separate macrophages into highly pure subpopulations of lectin-reactive and lectin-unreactive cells, as shown by examination of fluorescein-labeled lectin-treated cells with phase-contrast/fluorescence microscopy.

Full text

PDF
166

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M. K., Brashler J. R. Ionophore A 23187-induced production of slow reacting substance of anaphylaxis (SRS-A) by rat peritoneal cells in vitro: evidence for production by mononuclear cells. J Immunol. 1978 Mar;120(3):998–1005. [PubMed] [Google Scholar]
  2. Blake D. A., Goldstein I. J. An alpha-D-galactosyltransferase activity in Ehrlich ascites tumor cells. Biosynthesis and characterization of a trisaccharide (alpha-D-galactose-(1 goes to 3)-N-acetyllactosamine). J Biol Chem. 1981 Jun 10;256(11):5387–5393. [PubMed] [Google Scholar]
  3. Davies P., Bonney R. J. Secretory products of mononuclear phagocytes: a brief review. J Reticuloendothel Soc. 1979 Jul;26(1):37–47. [PubMed] [Google Scholar]
  4. Delmotte F. M., Goldstein I. J. Improved procedures for purification of the Bandeiraea simplicifolia I isolectins and Bandeiraea simplicifolia II lectin by affinity chromatography. Eur J Biochem. 1980 Nov;112(2):219–223. doi: 10.1111/j.1432-1033.1980.tb07197.x. [DOI] [PubMed] [Google Scholar]
  5. Distler J. J., Jourdian G. W. The purification and properties of beta-galactosidase from bovine testes. J Biol Chem. 1973 Oct 10;248(19):6772–6780. [PubMed] [Google Scholar]
  6. Monsigny M., Sene C., Obrenovitch A. Quantitative fluorimetric determination of cell-surface glycoconjugates with fluorescein-substituted lectins. Eur J Biochem. 1979 May 15;96(2):295–300. doi: 10.1111/j.1432-1033.1979.tb13040.x. [DOI] [PubMed] [Google Scholar]
  7. Ogmundsdóttir H. M., Weir D. M. Mechanisms of macrophage activation. Clin Exp Immunol. 1980 May;40(2):223–234. [PMC free article] [PubMed] [Google Scholar]
  8. Peters B. P., Goldstein I. J. The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of alpha-D-galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res. 1979 May;120(2):321–334. doi: 10.1016/0014-4827(79)90392-6. [DOI] [PubMed] [Google Scholar]
  9. Rosenthal A. S., Barcinski M. A., Rosenwasser L. J. Function of macrophages in genetic control of immune responsiveness. Fed Proc. 1978 Jan;37(1):79–85. [PubMed] [Google Scholar]
  10. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  11. Tucker S. B., Pierre R. V., Jordon R. E. Rapid identification of monocytes in a mixed mononuclear cell preparation. J Immunol Methods. 1977;14(3-4):267–269. doi: 10.1016/0022-1759(77)90137-5. [DOI] [PubMed] [Google Scholar]
  12. Unanue E. R. Cooperation between mononuclear phagocytes and lymphocytes in immunity. N Engl J Med. 1980 Oct 23;303(17):977–985. doi: 10.1056/NEJM198010233031706. [DOI] [PubMed] [Google Scholar]
  13. Unanue E. R. The regulatory role of macrophages in antigenic stimulation. Adv Immunol. 1972;15:95–165. doi: 10.1016/s0065-2776(08)60684-7. [DOI] [PubMed] [Google Scholar]
  14. WALLACH D. F., KAMAT V. B. PLASMA AND CYTOPLASMIC MEMBRANE FRAGMENTS FROM EHRLICH ASCITES CARCINOMA. Proc Natl Acad Sci U S A. 1964 Sep;52:721–728. doi: 10.1073/pnas.52.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zuckerman S. H., Douglas S. D. Dynamics of the macrophage plasma membrane. Annu Rev Microbiol. 1979;33:267–307. doi: 10.1146/annurev.mi.33.100179.001411. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES