Skip to main content
Journal of Biological Physics logoLink to Journal of Biological Physics
. 2001 Dec;27(4):313–327. doi: 10.1023/A:1014228824104

Slow Relaxation Process in DNA

AP Sokolov, H Grimm, A Kisliuk, AJ Dianoux
PMCID: PMC3456838  PMID: 23345751

Abstract

A dynamic transition at temperatures ∼200–230K is observed in manyhydrated bio-polymers. It shows up as a sharp increase of the mean-squaredatomic displacements above this temperature range. We present neutronscattering data of DNA at different levels of hydration. The analysis showsthat the dynamic transition in DNA is related to a slow relaxation processin the MHz-GHz frequency range. This slow relaxation process iscompletely suppressed in the dry DNA sample where no dynamic transitionwas observed. The nature of the slow process is discussed. We ascribe it toa global relaxation of DNA molecule that involves cooperative motion ofmany base-pairs and backbone.

Keywords: Bio-polymers, dynamic transition, dynamics, influence of hydration, relaxation in bio-polymers

Full Text

The Full Text of this article is available as a PDF (168.1 KB).

References

  • 1.Nienhaus G.U., Mourant J.R., Frauenfelder H. Spectroscopic Evidence for Conformational Relaxation in Myoglobin. Proc. Natl. Acad. Sci. USA. 1992;89:2902–2906. doi: 10.1073/pnas.89.7.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Parak F., et al. Evidence for a Correlation Between the Photoinduced Electron-Transfer and Dynamic Properties of the ChromophoreMembranes from Rhodospirillum-Rubrum. FEBS Lett. 1980;117:368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
  • 3.Rasmussen B.F., Stock A.M., Ringe D., Petsko G.A. Crystalline Ribonuclease-A Loses function Below the Dynamic Transition at 220-K. Nature. 1992;357:423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  • 4.Ferrand M., Dianoux A.J., Petry W., Zaccai G. Thermal Motions and Functions of Bacteriorhodopsin in Purple Membranes-Effects of Temperature and Hydration Studied by Neutron Scattering. Proc. Natl. Ac. Sci. USA. 1993;90:9668–9672. doi: 10.1073/pnas.90.20.9668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Doster W., Cusak S., Petry W. Dynamical Transition of Myoglobin Revealed by Inelastic Neutron Scattering. Nature. 1989;337:754–756. doi: 10.1038/337754a0. [DOI] [PubMed] [Google Scholar]
  • 6.Tsai A.M., Neumann D.A., Bell L.N. Molecular Dynamics of Solid-State Lysozyme as Affected by Glycerol and Water: A Neutron Scattering Study. Biophys. J. 2000;79:2728–2732. doi: 10.1016/S0006-3495(00)76511-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Cordone L., Ferrand M., Vitrano E., Zaccai G. Harmonic Behavior of Ytrehalose-Coated Carbon-Monoxy-Myoglobin at High Temperature. Biophys. J. 1999;76:1043–1047. doi: 10.1016/S0006-3495(99)77269-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sokolov, A.P., Grimm, H., Kisliuk, A. and Dianoux, A.J.: Slow Relaxation Process in DNA at Different Levels of Hydration, J. Biol. Phys.S1-S5 (2000). [DOI] [PMC free article] [PubMed]
  • 9.Rupprecht A. Preparation of Oriented DNA by Wet Spinning. Acta Chem. Scand. 1966;20:494–504. doi: 10.3891/acta.chem.scand.20-0494. [DOI] [PubMed] [Google Scholar]
  • 10.Grimm H., Rupprecht A. Statics and Dynamics of oriented DNA as seen by Neutrons. Physica B. 1991;174:291–299. [Google Scholar]
  • 11.Grimm H., Rupprecht A. Low Frequency Dynamics of DNA. Physica B. 1997;234-236:183–187. [Google Scholar]
  • 12.Lindsay S.M., Lee S.A., Weidlich T., Demarco C., Lewen G.D., Tao N.J. The Origin of the A to B Transition in DNA Fibers and Films. Biopolymers. 1988;27:1015–1043. doi: 10.1002/bip.360270610. [DOI] [PubMed] [Google Scholar]
  • 13.Transport Theory and Statistical Physics, Special Issue Devoted to Relaxation Kinetics in Supercooled Liquids-Mode Coupling Theory and Its Experimental Tests, Eds. Nelson, P. and Allen, G.D.,24 (1995) 755–1268.
  • 14.Bennemann C., Baschnagel J., Paul W. Molecular-Dynamics Simulation of a Glassy Polymer Melt: Incoherent Scattering Function. Eur.Physical J. B. 1999;10:323–334. [Google Scholar]
  • 15.Rössler E., Sokolov A.P., Kisliuk A., Quitmann D. Low-Frequency Raman Scattering on Different Types of Glass Formers used to Test Predictions of Mode-Coupling Theory. Phys. Rev. B. 1994;49:14967–14978. doi: 10.1103/physrevb.49.14967. [DOI] [PubMed] [Google Scholar]
  • 16.Franosch T., et al. The Evolution of Structural Relaxation Spectra of Glycerol within the Giga Hertz Band. Phys. Rev. E. 1997;55:3183–3190. [Google Scholar]
  • 17.Bergman R., et al. Dynamics around the Liquid-Glass Transition in Poly(propylene-glycol) Investigated by Wide-Frequency-Range Light-Scattering Techniques. Phys. Rev. B. 1997;56:11619–11628. [Google Scholar]
  • 18.Kisliuk A., Mathers R.T., Sokolov A.P. Crossover in Dynamics of Polymeric Liquids: Back to TII ? J. Pol. Sci. Phys. 2000;38:2785–2790. [Google Scholar]
  • 19.Fitter J., Lechner R.E., Dencher N.A. Biophys. J. 1997;73:2126. doi: 10.1016/S0006-3495(97)78243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sokolov A.P., Grimm H., Kahn R. Glassy Dynamics in DNA: Ruled by Water of Hydration? J. Chem. Phys. 1999;110:7053–7057. [Google Scholar]
  • 21.Mashimo S., et al. Dielectric Study on Dynamics and Structure ofWater Bound to DNA Using a Frequency Range 107-1010 Hz. J. Phys. Chem. 1989;93:4963–4967. [Google Scholar]
  • 22.Hogan M.E., Jardetzky O. Internal Motions in Deoxynucleic Acid II. Biochemistry. 1980;19:3460–3468. doi: 10.1021/bi00556a009. [DOI] [PubMed] [Google Scholar]
  • 23.Early T.A., Kearns D.R. Proc. Natl. Acad. Sci. U.S.A. 1979;76:4170–4174. doi: 10.1073/pnas.76.9.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sokolov A.P., Hurst J., Quitmann D. Dynamics of Supercooled Water: Mode-Coupling Theory Approach. Phys. Rev. B. 1995;51:12865–12868. doi: 10.1103/physrevb.51.12865. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Biological Physics are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES