Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302

Are DNA precursors concentrated at replication sites?

C K Mathews, N K Sinha
PMCID: PMC345714  PMID: 7043458

Abstract

We have asked whether the effective concentrations of deoxyribonucleotide 5'-triphosphates (dNTPs) at sites of DNA replication in vivo might be higher than the concentrations of dNTPs averaged over the entire cell volume. The approach involved determination of the dependence of DNA replication rate upon thymidine triphosphate concentration, both in vivo and in vitro system that closely approximates the intracellular replication apparatus. In T4 phage-infected Escherichia coli maximal rates of DNA synthesis were attained with dTTP pools of approximately 1.2 x 10(5) molecules per cell, corresponding to an average intracellular concentration of about 65 microM. When DNA synthesis was measured in the T4 purified protein system [Sinha, N. K., Morris, C. F. & Alberts, B. M. (1980) J. Biol. Chem. 255 4290--4303], maximal rates were observed at dTTP concentrations of 200--240 microM. This represents a minimal estimate, therefore, of dTTP concentration at replication sites and suggests that at least a 3- to 4-fold concentration gradient exists near these sites. We discuss why such concentration gradients might be needed and how they might be generated. We also discuss the implications of these results for understanding the relationship between intracellular dNTP pools and mutation rates. A by-product of our study was the finding that exogenous thymidine is used for T4 DNA synthesis in preference to endogenous pathways to thymidine nucleotides; at high thymidine concentrations in vivo the endogenous pathways can be completely bypassed.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. R., Reddy G. P., Lasser G. W., Mathews C. K. T4 ribonucleotide reductase. Physical and kinetic linkage to other enzymes of deoxyribonucleotide biosynthesis. J Biol Chem. 1980 Aug 25;255(16):7583–7588. [PubMed] [Google Scholar]
  2. Berglund O. Ribonucleoside diphosphate reductase induced by bacteriophage T4. II. Allosteric regulation of substrate sepecificity and catalytic activity. J Biol Chem. 1972 Nov 25;247(22):7276–7281. [PubMed] [Google Scholar]
  3. Clayton L. K., Goodman M. F., Branscomb E. W., Galas D. J. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J Biol Chem. 1979 Mar 25;254(6):1902–1912. [PubMed] [Google Scholar]
  4. Fersht A. R. Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4946–4950. doi: 10.1073/pnas.76.10.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fersht A. R., Knill-Jones J. W. DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine.purine, purine.pyrimidine, and pyrimidine.pyrimidine mismatches during DNA replication. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4251–4255. doi: 10.1073/pnas.78.7.4251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flanegan J. B., Greenberg G. R. Regulation of deoxyribonucleotide biosynthesis during in vivo bacteriophage T4 DNA replication. Intrinsic control of synthesis of thymine and 5-hydroxymethylcytosine deoxyribonucleotides at precise ratio found in DNA. J Biol Chem. 1977 May 10;252(9):3019–3027. [PubMed] [Google Scholar]
  7. Freedman M. L., Krisch R. E. Enlargement of Escherichia coli after bacteriophage infection. II. Proposed mechanism. J Virol. 1971 Jul;8(1):95–102. doi: 10.1128/jvi.8.1.95-102.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillin F. D., Nossal N. G. T4 DNA polymerase has a lower apparent Km for deoxynucleoside triphosphates complementary rather than noncomplementary to the template. Biochem Biophys Res Commun. 1975 May 19;64(2):457–464. doi: 10.1016/0006-291x(75)90343-5. [DOI] [PubMed] [Google Scholar]
  9. Hibner U., Alberts B. M. Fidelity of DNA replication catalysed in vitro on a natural DNA template by the T4 bacteriophage multi-enzyme complex. Nature. 1980 May 29;285(5763):300–305. doi: 10.1038/285300a0. [DOI] [PubMed] [Google Scholar]
  10. Kuebbing D., Werner R. A model for compartmentation of de novo and salvage thymidine nucleotide pools in mammalian cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3333–3336. doi: 10.1073/pnas.72.9.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu C. C., Burke R. L., Hibner U., Barry J., Alberts B. Probing DNA replication mechanisms with the T4 bacteriophage in vitro system. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):469–487. doi: 10.1101/sqb.1979.043.01.053. [DOI] [PubMed] [Google Scholar]
  12. Manwaring J. D., Fuchs J. A. Relationship between deoxyribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in an nrdA mutant of Escherichia coli. J Bacteriol. 1979 Apr;138(1):245–248. doi: 10.1128/jb.138.1.245-248.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mathews C. K. Biochemistry of DNA-defective mutants of bacteriophage T4. Thymine nucleotide pool dynamics. Arch Biochem Biophys. 1976 Jan;172(1):178–187. doi: 10.1016/0003-9861(76)90064-3. [DOI] [PubMed] [Google Scholar]
  14. Mathews C. K. Biochemistry of deoxyribonucleic acid-defective amber mutants of bacteriophage T4. 3. Nucleotide pools. J Biol Chem. 1972 Nov 25;247(22):7430–7438. [PubMed] [Google Scholar]
  15. Mathews C. K. Giant pools of DNA precursors in sea urchin eggs. Exp Cell Res. 1975 Apr;92(1):47–56. doi: 10.1016/0014-4827(75)90635-7. [DOI] [PubMed] [Google Scholar]
  16. Mathews C. K., North T. W., Prem veer Reddy G. Multienzyme complexes in DNA precursor biosynthesis. Adv Enzyme Regul. 1978;17:133–156. doi: 10.1016/0065-2571(79)90011-6. [DOI] [PubMed] [Google Scholar]
  17. Meuth M., L'Heureux-Huard N., Trudel M. Characterization of a mutator gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6505–6509. doi: 10.1073/pnas.76.12.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pato M. L. Alterations of deoxyribonucleoside triphosphate pools in Escherichia coli: effects on deoxyribonucleic acid replication and evidence for compartmentation. J Bacteriol. 1979 Nov;140(2):518–524. doi: 10.1128/jb.140.2.518-524.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prem veer Reddy G., Pardee A. B. Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3312–3316. doi: 10.1073/pnas.77.6.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reddy G. P., Mathews C. K. Functional compartmentation of DNA precursors in T4 phage-infected bacteria. J Biol Chem. 1978 May 25;253(10):3461–3467. [PubMed] [Google Scholar]
  21. Reddy G. P., Singh A., Stafford M. E., Mathews C. K. Enzyme associations in T4 phage DNA precursor synthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3152–3156. doi: 10.1073/pnas.74.8.3152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scofield M. S., Collinsworth W. L., Mathews C. K. Continued synthesis of bacterial DNA after infection by bacteriophage T4. J Virol. 1974 Apr;13(4):847–857. doi: 10.1128/jvi.13.4.847-857.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sinha N. K., Haimes M. D. Molecular mechanisms of substitution mutagenesis. An experimental test of the Watson-Crick and topal-fresco models of base mispairings. J Biol Chem. 1981 Oct 25;256(20):10671–10683. [PubMed] [Google Scholar]
  24. Sinha N. K., Morris C. F., Alberts B. M. Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem. 1980 May 10;255(9):4290–4293. [PubMed] [Google Scholar]
  25. Smith M. D., Green R. R., Ripley L. S., Drake J. W. Thymineless mutagenesis in bacteriophage T4. Genetics. 1973 Jul;74(3):393–403. doi: 10.1093/genetics/74.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tomich P. K., Chiu C. S., Wovcha M. G., Greenberg G. R. Evidence for a complex regulating the in vivo activities of early enzymes induced by bacteriophage T4. J Biol Chem. 1974 Dec 10;249(23):7613–7622. [PubMed] [Google Scholar]
  27. Weinberg G., Ullman B., Martin D. W., Jr Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2447–2451. doi: 10.1073/pnas.78.4.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wovcha M. G., Chiu C. S., Tomich P. K., Greenberg G. R. Replicative bacteriophage DNA synthesis in plasmolyzed T4-infected cells: evidence for two independent pathways to DNA. J Virol. 1976 Oct;20(1):142–156. doi: 10.1128/jvi.20.1.142-156.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wurtz E. A., Sears B. B., Rabert D. K., Shepherd H. S., Gillham N. W., Boynton J. E. A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-fluorodeoxyuridine. Mol Gen Genet. 1979 Mar 5;170(3):235–242. doi: 10.1007/BF00267056. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES