Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):360–364. doi: 10.1073/pnas.79.2.360

Partial characterization of the mRNA that codes for enkephalins in bovine adrenal medulla and human pheochromocytoma.

M Comb, E Herbert, R Crea
PMCID: PMC345732  PMID: 6952189

Abstract

[Met]enkephalin and [Leu]enkephalin are derived from a protein in bovine adrenal medulla that contains multiple copies of [Met]enkephalin [Kilpatrick, D. L., Taniguchi, T., Jones, B. N., Stern, A. S., Shively, J. E., Hullihan, J., Kimura, S., Stein, S. & Udenfriend, S. (1981) Proc. Natl. Acad. Sci. USA 78, 3265--3268.] Here we characterize pro-enkephalin mRNA from bovine and human tissue by use of an oligodeoxynucleotide pentadecamer probe complementary to codons for Tyr-Gly-Gly-Phe-Met ([Met]enkephalin). This probe hybridizes specifically to a species of poly(A)-RNA from adrenal medulla and human pheochromocytoma, (1400--1450 bases), and also to [Met]enkephalin-containing pro-opiomelanocortin mRNAs from bovine pituitary (1200 bases) and from mouse pituitary tumor cell (1100 bases). A cloned cDNA probe (144 bases) complementary to the region of pro-opiomelanocortin mRNA that codes for lipotropin does not hybridize to the RNA from bovine adrenal medulla, demonstrating that the latter RNA is not pro-opiomelanocortin mRNA. The pentadecamer probe was extended to make cDNA with reverse transcriptase after hybridizing it to adrenal poly(A)-RNA. The sequence of an extended cDNA, 62 bases in length, was found to correspond exactly to that expected from the amino acid sequence of peptide E (a bovine adrenal peptide containing [Met]- and [Leu]enkephalin sequences). This cDNA also forms a specific hybrid with the RNA from bovine adrenal and human pheochromocytoma, confirming that these species of RNA are pro-enkephalin mRNA.

Full text

PDF
360

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K. L., Brunstedt J., Noyes B. E. A general method for detection and characterization of an mRNA using an oligonucleotide probe. J Biol Chem. 1981 Jan 25;256(2):1023–1028. [PubMed] [Google Scholar]
  2. Birdsall N. J., Hulme E. C. C fragment of lipotropin has a high affinity for brain opiate receptors. Nature. 1976 Apr 29;260(5554):793–795. doi: 10.1038/260793a0. [DOI] [PubMed] [Google Scholar]
  3. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  4. Clement-Jones V., Corder R., Lowry P. J. Isolation of human met-enkephalin and two groups of putative precursors (2K-pro-met-enkephalin) from an adrenal medullary tumour. Biochem Biophys Res Commun. 1980 Jul 31;95(2):665–673. doi: 10.1016/0006-291x(80)90837-2. [DOI] [PubMed] [Google Scholar]
  5. Crea R., Kraszewski A., Hirose T., Itakura K. Chemical synthesis of genes for human insulin. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5765–5769. doi: 10.1073/pnas.75.12.5765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gillam S., Waterman K., Smith M. The base-pairing specificity of cellulose-pdT9. Nucleic Acids Res. 1975 May;2(5):625–634. doi: 10.1093/nar/2.5.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goeddel D. V., Shepard H. M., Yelverton E., Leung D., Crea R., Sloma A., Pestka S. Synthesis of human fibroblast interferon by E. coli. Nucleic Acids Res. 1980 Sep 25;8(18):4057–4074. doi: 10.1093/nar/8.18.4057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein A., Tachibana S., Lowney L. I., Hunkapiller M., Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6666–6670. doi: 10.1073/pnas.76.12.6666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houghton M., Stewart A. G., Doel S. M., Emtage J. S., Eaton M. A., Smith J. C., Patel T. P., Lewis H. M., Porter A. G., Birch J. R. The amino-terminal sequence of human fibroblast interferon as deduced from reverse transcripts obtained using synthetic oligonucleotide primers. Nucleic Acids Res. 1980 May 10;8(9):1913–1931. doi: 10.1093/nar/8.9.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudson P., Haley J., Cronk M., Shine J., Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature. 1981 May 14;291(5811):127–131. doi: 10.1038/291127a0. [DOI] [PubMed] [Google Scholar]
  11. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  12. Kilpatrick D. L., Taniguchi T., Jones B. N., Stern A. S., Shively J. E., Hullihan J., Kimura S., Stein S., Udenfriend S. A highly potent 3200-dalton adrenal opioid peptide that contains both a [Met]- and [Leu]enkephalin sequence. Proc Natl Acad Sci U S A. 1981 May;78(5):3265–3268. doi: 10.1073/pnas.78.5.3265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krieger D. T., Liotta A. S., Brownstein M. J., Zimmerman E. A. ACTH, beta-lipotropin, and related peptides in brain, pituitary, and blood. Recent Prog Horm Res. 1980;36:277–344. doi: 10.1016/b978-0-12-571136-4.50015-2. [DOI] [PubMed] [Google Scholar]
  14. Li C. H., Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1145–1148. doi: 10.1073/pnas.73.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liotta A. S., Gildersleeve D., Brownstein M. J., Krieger D. T. Biosynthesis in vitro of immunoreactive 31,000-dalton corticotropin/beta-endorphin-like material by bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1448–1452. doi: 10.1073/pnas.76.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mains R. E., Eipper B. A., Ling N. Common precursor to corticotropins and endorphins. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3014–3018. doi: 10.1073/pnas.74.7.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  18. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  19. Noyes B. E., Mevarech M., Stein R., Agarwal K. L. Detection and partial sequence analysis of gastrin mRNA by using an oligodeoxynucleotide probe. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1770–1774. doi: 10.1073/pnas.76.4.1770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4826–4830. doi: 10.1073/pnas.74.11.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roberts J. L., Herbert E. Characterization of a common precursor to corticotropin and beta-lipotropin: identification of beta-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5300–5304. doi: 10.1073/pnas.74.12.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roberts J. L., Seeburg P. H., Shine J., Herbert E., Baxter J. D., Goodman H. M. Corticotropin and beta-endorphin: construction and analysis of recombinant DNA complementary to mRNA for the common precursor. Proc Natl Acad Sci U S A. 1979 May;76(5):2153–2157. doi: 10.1073/pnas.76.5.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schultzberg M., Hökfelt T., Lundberg J. M., Terenius L., Elfvin L. G., Elde R. Enkephalin-like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta Physiol Scand. 1978 Aug;103(4):475–477. doi: 10.1111/j.1748-1716.1978.tb06243.x. [DOI] [PubMed] [Google Scholar]
  24. Sood A. K., Pereira D., Weissman S. M. Isolation and partial nucleotide sequence of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodeoxynucleotide primer. Proc Natl Acad Sci U S A. 1981 Jan;78(1):616–620. doi: 10.1073/pnas.78.1.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wallace R. B., Shaffer J., Murphy R. F., Bonner J., Hirose T., Itakura K. Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 1979 Aug 10;6(11):3543–3557. doi: 10.1093/nar/6.11.3543. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES