Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):395–399. doi: 10.1073/pnas.79.2.395

Specific cellular stimulation in the primary immune response: a quantized model.

B Vogelstein, R Z Dintzis, H M Dintzis
PMCID: PMC345749  PMID: 6952192

Abstract

A general theory for the initial phase of T cell independent immune response is derived from elementary physical-chemical considerations and from the premise that response entails a quantized linkage of cell surface receptors. The theory leads to the construction of explicit antigen dose--response and antigen dose--suppression curves, to the calculation of intrinsic affinities for receptors, and to the deduction that receptors are divalent in character. The theory may be applicable to other cell surface phenomena wherein requirements for stimulation and suppression are equivalent to those found in the immune system.

Full text

PDF
395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I. B lymphocyte activation and lattice formation. Transplant Rev. 1975;23:23–36. doi: 10.1111/j.1600-065x.1975.tb00146.x. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I. Model for the binding of multivalent antigen to cells. Nature. 1974 Mar 29;248(447):430–431. doi: 10.1038/248430a0. [DOI] [PubMed] [Google Scholar]
  3. DeLisi C., Metzger H. Some physical chemical aspects of receptor-ligand interactions. Immunol Commun. 1976;5(5):417–436. doi: 10.3109/08820137609033858. [DOI] [PubMed] [Google Scholar]
  4. Dintzis H. M., Dintzis R. Z., Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3671–3675. doi: 10.1073/pnas.73.10.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dresser D. W., Mitchison N. A. The mechanism of immunological paralysis. Adv Immunol. 1968;8:129–181. doi: 10.1016/s0065-2776(08)60466-6. [DOI] [PubMed] [Google Scholar]
  6. Goldstein B., Wofsy C. Theory of equilibrium binding of a bivalent ligand to cell surface antibody: the effect of antibody heterogeneity on cross-linking. J Math Biol. 1980 Dec;10(4):347–366. doi: 10.1007/BF00276094. [DOI] [PubMed] [Google Scholar]
  7. Hornick C. L., Karuch F. Antibody affinity. 3. The role of multivalance. Immunochemistry. 1972 Mar;9(3):325–340. doi: 10.1016/0019-2791(72)90096-1. [DOI] [PubMed] [Google Scholar]
  8. Hubbard D. A., Lee W. Y., Sehon A. H. Suppression of the anti-DNP IgE response with tolerogenic conjugates of DNP with polyvinyl alcohol. I. Specific suppression of the anti-DNP IgE response. J Immunol. 1981 Feb;126(2):407–413. [PubMed] [Google Scholar]
  9. Karush F. Affinity and the immune response. Ann N Y Acad Sci. 1970 Feb 13;169(1):56–64. doi: 10.1111/j.1749-6632.1970.tb55970.x. [DOI] [PubMed] [Google Scholar]
  10. Pike B. E., Battye F. L., Nossal G. J. Effect of hapten valency and carrier composition on the tolerogenic potential of hapten-protein conjugates. J Immunol. 1981 Jan;126(1):89–94. [PubMed] [Google Scholar]
  11. Reynolds J. A. Interaction of divalent antibody with cell surface antigens. Biochemistry. 1979 Jan 23;18(2):264–269. doi: 10.1021/bi00569a004. [DOI] [PubMed] [Google Scholar]
  12. Sigal N. H., Klinman N. R. The B-cell clonotype repertoire. Adv Immunol. 1978;26:255–337. doi: 10.1016/s0065-2776(08)60232-1. [DOI] [PubMed] [Google Scholar]
  13. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES