Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Jan;79(2):675–679. doi: 10.1073/pnas.79.2.675

Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat.

W H Oertel, E Mugnaini, M L Tappaz, V K Weise, A L Dahl, D E Schmechel, I J Kopin
PMCID: PMC345809  PMID: 6952219

Abstract

Activity of glutamic acid decarboxylase GluDCase, the biosynthetic enzyme of gamma-aminobutyric acid (GABA) was measured in low-speed homogenate supernatant of the neural and intermediate (neurointermediate) lobe (28--30 pmol of CO2 per microgram of protein per hr) and of the anterior lobe (2--4 pmol of CO2 per microgram of protein per hr). In the neurointermediate lobe, stalk transection reduced the GluDCase activity by more than 95%. By using an antiserum to rat brain GluDCase and the unlabeled antibody--peroxidase method of Sternberger, GluDCase immunoreactivity was localized in many terminals within the neurointermediate lobe of the hypophysis. In pars intermedia, immunoreactive terminals occurred in apposition to secretory cells and to glial cells and were near nonimmunoreactive axonal profiles; in pars neuralis they were apposed to pituicytes and to unlabeled axons including the neurosecretory terminals and were along fenestrated portal capillaries. GluDCase immunoreactive axons terminals exhibited diverse morphological features and would not have been identified as a distinct population without the GluDCase antiserum. No GluDCase-immunoreactivity was found in the anterior pituitary lobe. Stalk transection abolished GluDCase immunoreactivity in the neurointermediate lobe. These data provide biochemical and morphological evidence for a central GABAergic innervation of neural and intermediate lobes of the hypophysis.

Full text

PDF
675

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSSON B., LARSSON S., POCCHIARI F. Aspects on the glucose metabolism of the hypothalamus and the pituitary in goats. Acta Physiol Scand. 1961 Apr;51:314–324. doi: 10.1111/j.1748-1716.1961.tb02142.x. [DOI] [PubMed] [Google Scholar]
  2. Baumgarten H. G., Björklund A., Holstein A. F., Nobin A. Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary. Z Zellforsch Mikrosk Anat. 1972;126(4):483–517. doi: 10.1007/BF00306908. [DOI] [PubMed] [Google Scholar]
  3. Beinfeld M. C., Meyer D. K., Brownstein M. J. Cholecystokinin octapeptide in the rat hypothalamo-neurohypophysial system. Nature. 1980 Nov 27;288(5789):376–378. doi: 10.1038/288376a0. [DOI] [PubMed] [Google Scholar]
  4. Cocchia D., Miani N. Immunocytochemical localization of the brain-specific S-100 protein in the pituitary gland of adult rat. J Neurocytol. 1980 Dec;9(6):771–782. doi: 10.1007/BF01205018. [DOI] [PubMed] [Google Scholar]
  5. Enjalbert A., Ruberg M., Arancibia S., Fiore L., Priam M., Kordon C. Independent inhibition of prolactin secretion by dopamine and gamma-aminobutyric acid in vitro. Endocrinology. 1979 Sep;105(3):823–826. doi: 10.1210/endo-105-3-823. [DOI] [PubMed] [Google Scholar]
  6. Grandison L., Guidotti A. gamma-Aminobutyric acid receptor function in rat anterior pituitary: evidence for control of prolactin release. Endocrinology. 1979 Sep;105(3):754–759. doi: 10.1210/endo-105-3-754. [DOI] [PubMed] [Google Scholar]
  7. Hadley M. E., Davis M. D., Morgan C. M. Cellular control of melanocyte stimulating hormone secretion. Front Horm Res. 1977;4:94–104. doi: 10.1159/000400354. [DOI] [PubMed] [Google Scholar]
  8. Hamberger A., Norström A., Sandberg M., Svanberg U. In vitro GABA transport in the neurohypophysis from rats with hereditary diabetes insipidus and after osmotic stimulation. Brain Res. 1979 Oct 5;174(2):341–344. doi: 10.1016/0006-8993(79)90859-x. [DOI] [PubMed] [Google Scholar]
  9. Houser C. R., Vaughn J. E., Barber R. P., Roberts E. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 1980 Nov 3;200(2):341–354. doi: 10.1016/0006-8993(80)90925-7. [DOI] [PubMed] [Google Scholar]
  10. Hökfelt T., Efendić S., Hellerström C., Johansson O., Luft R., Arimura A. Cellular localization of somatostatin in endocrine-like cells and neurons of the rat with special references to the A1-cells of the pancreatic islets and to the hypothalamus. Acta Endocrinol Suppl (Copenh) 1975;200:5–41. [PubMed] [Google Scholar]
  11. Kanazawa I., Iversen L. L., Kelly J. S. Glutamate decarboxylase activity in the rat posterior pituitary, pineal gland, dorsal root ganglion and superior cervical ganglion. J Neurochem. 1976 Nov;27(5):1267–1269. doi: 10.1111/j.1471-4159.1976.tb00341.x. [DOI] [PubMed] [Google Scholar]
  12. Kelly J., Swanson L. W. Additional forebrain regions projecting to the posterior pituitary: preoptic region, bed nucleus of the stria terminalis, and zona incerta. Brain Res. 1980 Sep 15;197(1):1–9. doi: 10.1016/0006-8993(80)90430-8. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. LaBella F., Vivian S., Queen G. Abundance of cystathionine in the pineal body. Free amino acids and related compounds of bovine pineal, anterior and posterior pituitary, and brain. Biochim Biophys Acta. 1968 May;158(2):286–288. doi: 10.1016/0304-4165(68)90143-8. [DOI] [PubMed] [Google Scholar]
  15. Makara G. B., Stark E. Effects of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology. 1974;16(3-4):178–190. doi: 10.1159/000122564. [DOI] [PubMed] [Google Scholar]
  16. Mathison R. D., Dreifuss J. J. Structure-activity relationships of a neurohypophysial GABA receptor. Brain Res. 1980 Apr 14;187(2):476–480. doi: 10.1016/0006-8993(80)90219-x. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin B. J., Wood J. G., Saito K., Barber R., Vaughn J. E., Roberts E., Wu J. Y. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res. 1974 Aug 23;76(3):377–391. doi: 10.1016/0006-8993(74)90815-4. [DOI] [PubMed] [Google Scholar]
  18. Meyer D. K., Oertel W. H., Brownstein M. J. Deafferentation studies on the glutamic acid decarboxylase content of the supraoptic nucleus of the rat. Brain Res. 1980 Oct 27;200(1):165–168. doi: 10.1016/0006-8993(80)91102-6. [DOI] [PubMed] [Google Scholar]
  19. Minchin M. C., Beart P. M. Compartmentation of amino acid metabolism in the rat posterior pituitary. J Neurochem. 1975 May;24(5):881–884. doi: 10.1111/j.1471-4159.1975.tb03651.x. [DOI] [PubMed] [Google Scholar]
  20. Mugnaini E., Dahl A. L. Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J Comp Neurol. 1975 Aug 15;162(4):417–432. doi: 10.1002/cne.901620402. [DOI] [PubMed] [Google Scholar]
  21. Pass K. A., Ondo J. G. The effects of gamma-aminobutyric acid on prolactin and gonadotropin secretion in the unanesthetized rat. Endocrinology. 1977 May;100(5):1437–1442. doi: 10.1210/endo-100-5-1437. [DOI] [PubMed] [Google Scholar]
  22. Racagni G., Apud J. A., Locatelli V., Cocchi D., Nistico G., di Giorgio R. M., Müller E. E. GABA of CNS origin in the rat anterior pituitary inhibits prolactin secretion. Nature. 1979 Oct 18;281(5732):575–578. doi: 10.1038/281575a0. [DOI] [PubMed] [Google Scholar]
  23. Rossier J., Battenberg E., Pittman Q., Bayon A., Koda L., Miller R., Guillemin R., Bloom F. Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature. 1979 Feb 22;277(5698):653–655. doi: 10.1038/277653a0. [DOI] [PubMed] [Google Scholar]
  24. Schally A. V., Redding T. W., Arimura A., Dupont A., Linthicum G. L. Isolation of gamma-amino butyric acid from pig hypothalami and demonstration of its prolactin release-inhibiting (PIF) activity in vivo and in vitro. Endocrinology. 1977 Mar;100(3):681–691. doi: 10.1210/endo-100-3-681. [DOI] [PubMed] [Google Scholar]
  25. Schon F., Iversen L. L. The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in the brain. Life Sci. 1974 Jul 15;15(2):157–175. doi: 10.1016/0024-3205(74)90205-7. [DOI] [PubMed] [Google Scholar]
  26. Tappaz M. L., Aguera M., Belin M. F., Oertel W. H., Schmechel D. E., Kopin I. J., Pujol J. F. GABA markers in the hypothalamic median eminence. Adv Biochem Psychopharmacol. 1981;26:229–236. [PubMed] [Google Scholar]
  27. Tappaz M. L., Brownstein M. J. Origin of glutamate-decarboxylase (GAD)-containing cells in discrete hypothalamic nuclei. Brain Res. 1977 Aug 19;132(1):95–106. doi: 10.1016/0006-8993(77)90708-9. [DOI] [PubMed] [Google Scholar]
  28. Vijayan E., McCann S. M. Effects of intraventricular injection of gamma-aminobutyric acid (GABA) on plasma growth hormone and thyrotropin in conscious ovariectomized rats. Endocrinology. 1978 Nov;103(5):1888–1893. doi: 10.1210/endo-103-5-1888. [DOI] [PubMed] [Google Scholar]
  29. Wu J. Y., Chude O., Wein J., Roberts E., Saito K., Wong E. Distribution and tissue specificity of glutamate decarboxylase (EC 4.1.1.15). J Neurochem. 1978 Apr;30(4):849–857. doi: 10.1111/j.1471-4159.1978.tb10793.x. [DOI] [PubMed] [Google Scholar]
  30. Zingg H. H., Baertschi A. J., Dreifuss J. J. Action of gamma-aminobutyric acid on hypothalamo-neurohypophysial axons. Brain Res. 1979 Aug 10;171(3):453–459. doi: 10.1016/0006-8993(79)91049-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES