Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Feb;79(3):744–748. doi: 10.1073/pnas.79.3.744

Identification of thymidine-5′-aldehyde at DNA strand breaks induced by neocarzinostatin chromophore

Lizzy S Kappen *, Irving H Goldberg *,, Jerrold M Liesch
PMCID: PMC345828  PMID: 16593156

Abstract

Snake venom phosphodiesterase or endonuclease S1 digestion of neocarzinostatin chromophore-treated DNA, labeled in its thymidine residues, liberates an unusual labeled nucleoside from the 5′ end of a drug-induced break. This substance, isolated by reverse-phase HPLC, possesses carbons from both the thymine and the deoxyribose moieties of thymidine in the DNA but, unlike thymidine, is readily degraded at pH 12 to thymine and a sugar fragment. The altered nucleoside was shown to contain a carbonyl group by its reduction with NaBH4 to form a substance that has the chromatographic properties of thymidine and by its reaction with various hydrazines to form the respective hydrazone derivatives; the carbonyl exists as the 5′ aldehyde as shown by its mild chemical oxidation to the carboxylic acid with simultaneous loss of the 5′ 3H. Mass spectral analysis showed a fragmentation pattern compatible with the structure thymidine-5′-aldehyde. These data indicate that the nonprotein chromophore of neocarzinostatin, in the presence of a reducing substance (2-mercaptoethanol) and molecular oxygen, selectively oxidizes the 5′ carbon of nucleosides in DNA to the aldehyde, resulting in a strand break and a DNA fragment bearing nucleoside-5′-aldehyde at its 5′ end.

Keywords: nucleoside oxidation, alkali lability, nuclease digestion, base release

Full text

PDF
744

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers-Schönberg G., Dewey R. S., Hensens O. D., Liesch J. M., Napier M. A., Goldberg I. H. Neocarzinostatin: chemical characterization and partial structure of the non-protein chromophore. Biochem Biophys Res Commun. 1980 Aug 14;95(3):1351–1356. doi: 10.1016/0006-291x(80)91622-8. [DOI] [PubMed] [Google Scholar]
  2. D'Andrea A. D., Haseltine W. A. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3608–3612. doi: 10.1073/pnas.75.8.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edo K., Iseki S., Ishida N., Horie T., Kusano G., Nozoe S. An electron spin resonance study of a spin adduct of the non-protein component (NPC) of neocarzinostatin. J Antibiot (Tokyo) 1980 Dec;33(12):1586–1589. doi: 10.7164/antibiotics.33.1586. [DOI] [PubMed] [Google Scholar]
  4. HOGENKAMP H. P., LADD J. N., BARKER H. A. The identification of a nucleoside derived from coenzyme B12. J Biol Chem. 1962 Jun;237:1950–1952. [PubMed] [Google Scholar]
  5. Hatayama T., Goldberg I. H. Deoxyribonucleic acid sugar damage in the action of neocarzinostatin. Biochemistry. 1980 Dec 9;19(25):5890–5898. doi: 10.1021/bi00566a035. [DOI] [PubMed] [Google Scholar]
  6. Hatayama T., Goldberg I. H., Takeshita M., Grollman A. P. Nucleotide specificity in DNA scission by neocarzinostatin. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3603–3607. doi: 10.1073/pnas.75.8.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishida R., Takahashi T. In vitro release of thymine from DNA by neocarzinostatin. Biochem Biophys Res Commun. 1976 Jan 12;68(1):256–261. doi: 10.1016/0006-291x(76)90037-1. [DOI] [PubMed] [Google Scholar]
  8. Kappen L. S., Goldberg I. H. Activation and inactivation of neocarzinostatin-induced cleavage of DNA. Nucleic Acids Res. 1978 Aug;5(8):2959–2967. doi: 10.1093/nar/5.8.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kappen L. S., Goldberg I. H. Gaps in DNA induced by neocarzinostatin bear 3'- and 5'-phosphoryl termini. Biochemistry. 1978 Feb 21;17(4):729–734. doi: 10.1021/bi00597a027. [DOI] [PubMed] [Google Scholar]
  10. Kappen L. S., Goldberg I. H. Mechanism of the effect of organic solvents and other protein denaturants of neocarzinostatin activity. Biochemistry. 1979 Dec 11;18(25):5647–5653. doi: 10.1021/bi00592a020. [DOI] [PubMed] [Google Scholar]
  11. Kappen L. S., Goldberg I. H. Stabilization of neocarzinostatin nonprotein chromophore activity by interaction with apoprotein and with HeLa cells. Biochemistry. 1980 Oct 14;19(21):4786–4790. doi: 10.1021/bi00562a011. [DOI] [PubMed] [Google Scholar]
  12. Kappen L. S., Napier M. A., Goldberg I. H. Roles of chromophore and apo-protein in neocarzinostatin action. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1970–1974. doi: 10.1073/pnas.77.4.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meienhofer J., Maeda H., Glaser C. B., Czombos J., Kuromizu K. Primary structure of neocarzinostatin, an antitumor protein. Science. 1972 Nov 24;178(4063):875–876. doi: 10.1126/science.178.4063.875. [DOI] [PubMed] [Google Scholar]
  14. Napier M. A., Goldberg I. H., Hensens O. D., Dewey R. S., Liesch J. M., Albers-Schönberg G. Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochem Biophys Res Commun. 1981 Jun;100(4):1703–1712. doi: 10.1016/0006-291x(81)90715-4. [DOI] [PubMed] [Google Scholar]
  15. Napier M. A., Holmquist B., Strydom D. J., Goldberg I. H. Neocarzinostatin: spectral characterization and separation of a non-protein chromophore. Biochem Biophys Res Commun. 1979 Jul 27;89(2):635–642. doi: 10.1016/0006-291x(79)90677-6. [DOI] [PubMed] [Google Scholar]
  16. Napier M. A., Kappen L. S., Goldberg I. H. Effect of nonprotein chromophore removal on neocarzinostatin action. Biochemistry. 1980 Apr 29;19(9):1767–1773. doi: 10.1021/bi00550a007. [DOI] [PubMed] [Google Scholar]
  17. Poon R., Beerman T. A., Goldberg I. H. Characterization of DNA strand breakage in vitro by the antitumor protein neocarzinostatin. Biochemistry. 1977 Feb 8;16(3):486–493. doi: 10.1021/bi00622a023. [DOI] [PubMed] [Google Scholar]
  18. Povirk L. F., Dattagupta N., Warf B. C., Goldberg I. H. Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation. Biochemistry. 1981 Jul 7;20(14):4007–4014. doi: 10.1021/bi00517a009. [DOI] [PubMed] [Google Scholar]
  19. Povirk L. F., Goldberg I. H. Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid. Biochemistry. 1980 Oct 14;19(21):4773–4780. doi: 10.1021/bi00562a009. [DOI] [PubMed] [Google Scholar]
  20. Povirk L. F., Goldberg I. H. Covalent adducts of DNA and the nonprotein chromophore of neocarzinostatin contain a modified deoxyribose. Proc Natl Acad Sci U S A. 1982 Jan;79(2):369–373. doi: 10.1073/pnas.79.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sheridan R. P., Gupta R. K. Electron spin resonance detection of free radicals in the mercaptan-activation and UV-inactivation of neocarzinostatin. Biochem Biophys Res Commun. 1981 Mar 16;99(1):213–220. doi: 10.1016/0006-291x(81)91734-4. [DOI] [PubMed] [Google Scholar]
  22. Takeshita M., Kappen L. S., Grollman A. P., Eisenberg M., Goldberg I. H. Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Biochemistry. 1981 Dec 22;20(26):7599–7606. doi: 10.1021/bi00529a039. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES