Abstract
This study investigated the ability of optical coherence tomography (OCT), a recently developed technology with micron-scale resolution, to assess the microstructure of tendons and ligaments. In vitro structural- and polarization-sensitive OCT was performed on human ACL, Achilles tendon, and biceps tendon (obtained postmortem). Histology was performed on all imaged samples and compared to the corresponding OCT data. OCT images correlated well with histology. Most importantly, through polarization-sensitive OCT, the collagen in normal tissue was easily distinguished from the surrounding, supportive tissue due to the birefringent properties of organized collagen. Since the integrity of collagen is an important indicator of structural stability and pathologic state, the ability of OCT to assess collagen could be a powerful diagnostic tool in assessing tendon and ligament properties.
Résumé
Cette étude a examiné la capacité de la tomographie de cohésion optique (OCT), une technologie récemment développée avec une résolution de l'échelle du micron, à étudier la microstructure des tendons et ligaments. L'étude in vitro a été exécuté sur le ligament croisé antérieur humain, le tendon d'Achille et le tendon du biceps ( obtenu post mortem). L'histologie a été exécutée sur tous les échantillons et comparée aux données OCT correspondantes. Les images OCT ont eu une bonne corrélation avec l'histologie. Plus important, à travers l'image OCT en polarisation, le collagène du tissu normal a été distingué facilement des tissus avoisinants grace à ses propriétés biréfringentes. Puisque l'intégrité du collagène est un indicateur important de la stabilité structurelle ou d'un état pathologique, la capacité de l'OCT à apprécier le collagène pourrait être un outil diagnostique puissant dans l'étude des propriétés des tendons et ligaments.
Full Text
The Full Text of this article is available as a PDF (525.4 KB).
Acknowledgments
This research is supported in part by the National Institutes of Health, Contract NIH R01 HL63953–01 (MEB), NIH R01 AR46996–01 (MEB), NIH-9-RO1-EY11289–14 (JGF), NIH-1-RO1-CA75289–04 (JGF); the Medical Free Electron Laser Program, Office of Naval Research Contract Grant F49620–01–1-0186 (JGF and MEB); and the National Institutes of Health, Contracts 1RO1AR44812–01 (MEB), NIH-1-R29-HL55686–01A1 (MEB), NIH-RO1-AR44812–02 (MEB), R01 HL55686–07 (MEB), and R01EB000419–01A1 (MEB).
References
- 1.Astrom Clin Orthop. 1995;316:151. [PubMed] [Google Scholar]
- 2.Azangwe G, Mathias KJ, Marshall D (2000) Macro and microscopic examination of the ruptured surfaces of anterior cruciate ligaments of rabbits. J Bone Joint Surg [Br] 82:450–456 [DOI] [PubMed]
- 3.Boppart Medicine. 1998;4:861. [Google Scholar]
- 4.Brezinski Circulation. 1996;93:1206. doi: 10.1161/01.cir.93.6.1206. [DOI] [PubMed] [Google Scholar]
- 5.Drexler J Rheumatol. 2001;28:1311. [PubMed] [Google Scholar]
- 6.HerrmannJ Rheumatol 19992662710090174 [Google Scholar]
- 7.Huang Science. 1991;254:1178. doi: 10.1126/science.1957169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Junqueira J Pathology. 1986;148:189. doi: 10.1002/path.1711480210. [DOI] [PubMed] [Google Scholar]
- 9.Kartus Knee Surg Sports Traumatol Arthroscopy. 1999;7:2. doi: 10.1007/s001670050112. [DOI] [PubMed] [Google Scholar]
- 10.Kartus Am J Sports Med. 2000;28:218. doi: 10.1177/03635465000280021301. [DOI] [PubMed] [Google Scholar]
- 11.Li Optics Letters. 2000;25:1520. doi: 10.1364/ol.25.001520. [DOI] [PubMed] [Google Scholar]
- 12.Movin Acta Orthop Scand. 1997;68:1701. doi: 10.3109/17453679709004002. [DOI] [PubMed] [Google Scholar]
- 13.Schmitt Optics Express. 1998;6:199. doi: 10.1364/oe.3.000199. [DOI] [PubMed] [Google Scholar]
- 14.Sweat Archives of Pathology. 1964;78:69. [PubMed] [Google Scholar]
- 15.Tearney Science. 1997;276:2037. doi: 10.1126/science.276.5321.2037. [DOI] [PubMed] [Google Scholar]
- 16.VanUltraschall in Med 1998191969842682 [Google Scholar]
- 17.Wojtys Am J Sports Med. 1998;26:614. doi: 10.1177/03635465980260050301. [DOI] [PubMed] [Google Scholar]
