Skip to main content
Age logoLink to Age
. 2005 Dec 31;27(3):241–248. doi: 10.1007/s11357-005-2916-z

Long live the queen: studying aging in social insects

Stephanie Jemielity 1,, Michel Chapuisat 1, Joel D Parker 1, Laurent Keller 1
PMCID: PMC3458492  PMID: 23598656

Abstract

Aging is a fascinating, albeit controversial, chapter in biology. Few other subjects have elicited more than a century of ever-increasing scientific interest. In this review, we discuss studies on aging in social insects, a group of species that includes ants and termites, as well as certain bee and wasp species. One striking feature of social insects is the lifespan of queens (reproductive females), which can reach nearly 30 years in some ant species. This is over 100 times the average lifespan of solitary insects. Moreover, there is a tremendous variation in lifespan among castes, with queens living up to 500 times longer than males and 10 times longer than workers (non-reproductive individuals). This lifespan polymorphism has allowed researchers to test the evolutionary theory of aging and – more recently – to investigate the proximate causes of aging. The originality of these studies lies in their use of naturally evolved systems to address questions related to aging and lifespan determination that cannot be answered using the conventional model organisms.

Key words: aging, disposable soma, evolutionary theory, social insects

Full Text

The Full Text of this article is available as a PDF (160.8 KB).

References

  1. Abrams PA. Does increased mortality favor the evolution of more rapid senescence? Evolution. 1993;47:877–887. doi: 10.2307/2410191. [DOI] [PubMed] [Google Scholar]
  2. Aigaki T, Seong KH, Matsuo T. Longevity determination genes in Drosophila melanogaster. Mech Ageing Dev. 2002;123:1531–1541. doi: 10.1016/S0047-6374(02)00089-1. [DOI] [PubMed] [Google Scholar]
  3. Amdam GV, Simoes ZLP, Hagen A, Norberg K, Schroder K, et al. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol. 2004;39:767–773. doi: 10.1016/j.exger.2004.02.010. [DOI] [PubMed] [Google Scholar]
  4. Arking R, Buck S, Novoseltev VN, Hwangbo D, Lane M. Genomic pasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev. 2002;1:209–228. doi: 10.1016/S1568-1637(01)00010-1. [DOI] [PubMed] [Google Scholar]
  5. Austad SN, Fischer KE. Mammalian aging, metabolism, and ecology – Evidence from the bats and marsupials. J Gerontol. 1991;46:B47–B53. doi: 10.1093/geronj/46.2.b47. [DOI] [PubMed] [Google Scholar]
  6. Chapuisat M, Keller L. Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc Lond Ser B Biol Sci. 2002;269:909–913. doi: 10.1098/rspb.2002.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B. Evolution in Age-Structured Populations. Cambridge: Cambridge University Press; 1980. [Google Scholar]
  8. Dudas SP and Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol Ser A–Biol Sci Med Sci B1117–B1127 [DOI] [PubMed]
  9. Dudycha JL. The senescence of Daphnia from risky and safe habitats. Ecol Lett. 2001;4:102–105. doi: 10.1046/j.1461-0248.2001.00211.x. [DOI] [Google Scholar]
  10. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687. [DOI] [PubMed] [Google Scholar]
  11. Fluri P, Lüscher H, Wille H, Gerig L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol. 1982;28:61–68. doi: 10.1016/0022-1910(82)90023-3. [DOI] [Google Scholar]
  12. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000;408:255–262. doi: 10.1038/35041700. [DOI] [PubMed] [Google Scholar]
  13. Hamilton WD. The moulding of senescence by natural selection. J Theor Biol. 1966;12:12–45. doi: 10.1016/0022-5193(66)90184-6. [DOI] [PubMed] [Google Scholar]
  14. Harman D. Aging – A theory based on free-radical and radiation chemistry. J Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  15. Hartmann A, Heinze J. Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution. 2003;57:2424–2429. doi: 10.1111/j.0014-3820.2003.tb00254.x. [DOI] [PubMed] [Google Scholar]
  16. Hekimi S, Guarente L. Genetics and the specificity of the aging process. Science. 2003;299:1351–1354. doi: 10.1126/science.1082358. [DOI] [PubMed] [Google Scholar]
  17. Hillesheim E, Stearns SC. Correlated responses in life-history traits to artificial selection for body-weight in Drosophila melanogaster. Evolution. 1992;46:745–752. doi: 10.2307/2409642. [DOI] [PubMed] [Google Scholar]
  18. Hölldobler B, Wilson EO. The number of queens: An important trait in ant evolution. Naturwissenschaften. 1977;64:8–15. doi: 10.1007/BF00439886. [DOI] [Google Scholar]
  19. Hölldobler B, Wilson EO. The Ants. Berlin: Springer-Verlag; 1990. [Google Scholar]
  20. Jenkins NL, McColl G, Lithgow GJ. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc R Soc Lond Ser B Biol Sci. 2004;271:2523–2526. doi: 10.1098/rspb.2004.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keller L. Queen lifespan and colony characteristics in ants and termites. Insect Soc. 1998;45:235–246. doi: 10.1007/s000400050084. [DOI] [Google Scholar]
  22. Keller L, Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature. 1997;389:958–960. doi: 10.1038/40130. [DOI] [Google Scholar]
  23. Kirkwood TBL. Evolution of aging. Nature. 1977;270:301–304. doi: 10.1038/270301a0. [DOI] [PubMed] [Google Scholar]
  24. Kirkwood TBL. Repair and its evolution: survival versus reproduction. In: Townsend CR, Calow P, editors. Physiological Ecology: An Evolutionary Approach to Resource Use. Oxford: Blackwell Scientific Publications; 1981. pp. 165–189. [Google Scholar]
  25. Kirkwood TBL, Rose MR. Evolution of senescence – late survival sacrificed for reproduction. Philos Trans R Soc Lond Ser B Biol Sci. 1991;332:15–24. doi: 10.1098/rstb.1991.0028. [DOI] [PubMed] [Google Scholar]
  26. Ku HH, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydrogen-peroxide production and longevity of mammalian species. Free Radic Biol Med. 1993;15:621–627. doi: 10.1016/0891-5849(93)90165-Q. [DOI] [PubMed] [Google Scholar]
  27. Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA. Selection for delayed senescence in Drosophila melanogaster. Evolution. 1984;38:996–1003. doi: 10.2307/2408433. [DOI] [PubMed] [Google Scholar]
  28. Marden JH, Rogina B, Montooth KL, Helfand SL. Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA. 2003;100:3369–3373. doi: 10.1073/pnas.0634985100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Medawar PB. An Unsolved Problem of Biology. London: Lewis; 1952. [Google Scholar]
  30. Medvedev ZA. An attempt at a rational classification of theories of aging. Biol Rev. 1990;65:375–398. doi: 10.1111/j.1469-185x.1990.tb01428.x. [DOI] [PubMed] [Google Scholar]
  31. Neukirch A. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol B. 1982;146:35–40. doi: 10.1007/BF00688714. [DOI] [Google Scholar]
  32. Nonacs P. Queen number in colonies of social Hymenoptera as a kin-selected adaptation. Evolution. 1988;42:566–580. doi: 10.2307/2409040. [DOI] [PubMed] [Google Scholar]
  33. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  34. Oster GF, Wilson EO. Caste and Ecology in the Social Insects. Princeton: Princeton University Press; 1978. [PubMed] [Google Scholar]
  35. Parker JD, Parker KM, Sohal BH, Sohal RS, Keller L. Decreased expression of Cu–Zn superoxide dismutase 1 in ants with extreme lifespan. Proc Natl Acad Sci USA. 2004;101:3486–3489. doi: 10.1073/pnas.0400222101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parker JD, Parker KM, Keller L. Molecular phylogenetic evidence for an extracellular Cu Zn superoxide dismutase gene in insects. Insect Mol Biol. 2004;13:587–594. doi: 10.1111/j.0962-1075.2004.00515.x. [DOI] [PubMed] [Google Scholar]
  37. Partridge L, Fowler K. Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution. 1992;46:76–91. doi: 10.2307/2409806. [DOI] [PubMed] [Google Scholar]
  38. Partridge L, Prowse N, Pignatelli P. Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc R Soc Lond Ser B Biol Sci. 1999;266:255–261. doi: 10.1098/rspb.1999.0630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Perez-Campo R, López-Torres M, Cadenas E, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B. 1998;168:149–158. doi: 10.1007/s003600050131. [DOI] [PubMed] [Google Scholar]
  40. Pinto LZ, Bitondi MMG, Simoes ZLP. Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. J Insect Physiol. 2000;46:153–160. doi: 10.1016/S0022-1910(99)00111-0. [DOI] [PubMed] [Google Scholar]
  41. Promislow DEL. Senescence in natural populations of mammals: A comparative study. Evolution. 1991;45:1869–1887. doi: 10.2307/2409837. [DOI] [PubMed] [Google Scholar]
  42. Reeve HK, Nonacs P. Within-group aggression and the value of group members – Theory and a field test with social wasps. Behav Ecol. 1997;8:75–82. [Google Scholar]
  43. Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature. 2004;431:1095–1099. doi: 10.1038/nature02936. [DOI] [PubMed] [Google Scholar]
  44. Ricklefs RE. Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am Nat. 1998;152:24–44. doi: 10.1086/286147. [DOI] [PubMed] [Google Scholar]
  45. Rose MR. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution. 1984;38:1004–1010. doi: 10.2307/2408434. [DOI] [PubMed] [Google Scholar]
  46. Rose MR. Evolutionary Biology of Aging. New York: Oxford University Press; 1991. [Google Scholar]
  47. Rueppell O, Amdam GV, Page RE and Carey JR (2004) From genes to societies. Sci Aging Knowl Environ, pe5 [DOI] [PMC free article] [PubMed]
  48. Sohal RS, Agarwal A, Agarwal S, Orr WC. Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem. 1995;270:15671–15674. doi: 10.1074/jbc.270.26.15671. [DOI] [PubMed] [Google Scholar]
  49. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging: An appraisal of the oxidative stress hypothesis. Free Radic Biol Med. 2002;33:575–586. doi: 10.1016/S0891-5849(02)00886-9. [DOI] [PubMed] [Google Scholar]
  50. Spencer CC, Howell CE, Wright AR, Promislow DEL. Testing an ‘aging gene’ in long-lived Drosophila strains: Increased longevity depends on sex and genetic background. Aging Cell. 2003;2:123–130. doi: 10.1046/j.1474-9728.2003.00044.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Stearns SC. The Evolution of Life Histories. Oxford: Oxford University Press; 1992. [Google Scholar]
  52. Stearns SC, Ackermann M, Doebeli M, Kaiser M. Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci USA. 2000;97:3309–3313. doi: 10.1073/pnas.060289597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sun J, Tower J. FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol. 1999;19:216–228. doi: 10.1128/mcb.19.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tatar M, Gray DW, Carey JR. Altitudinal variation for senescence in Melanoplus grasshoppers. Oecologia. 1997;111:357–364. doi: 10.1007/s004420050246. [DOI] [PubMed] [Google Scholar]
  55. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346–1351. doi: 10.1126/science.1081447. [DOI] [PubMed] [Google Scholar]
  56. Tower J. Transgenic methods for increasing Drosophila life span. Mech Ageing Dev. 2000;118:1–14. doi: 10.1016/S0047-6374(00)00152-4. [DOI] [PubMed] [Google Scholar]
  57. Tsuji K, Nakata K, Heinze J. Lifespan and reproduction in a queenless ant. Naturwissenschaften. 1996;83:577–578. [Google Scholar]
  58. Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ. Evolution of lifespan in C. elegans. Nature. 2000;405:296–297. doi: 10.1038/35012693. [DOI] [PubMed] [Google Scholar]
  59. Wheeler DE. Developmental and physiological determinants of caste in social Hymenoptera–Evolutionary implications. Am Nat. 1986;128:13–34. doi: 10.1086/284536. [DOI] [Google Scholar]
  60. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957;11:398–411. doi: 10.2307/2406060. [DOI] [Google Scholar]
  61. Zwaan B, Bijlsma R, Hoekstra RE. Direct selection on life-span in Drosophila melanogaster. Evolution. 1995;49:649–659. doi: 10.2307/2410318. [DOI] [PubMed] [Google Scholar]
  62. Zwaan B, Bijlsma R, Hoekstra RF. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging-direct and correlated responses. Evolution. 1995;49:635–648. doi: 10.2307/2410317. [DOI] [PubMed] [Google Scholar]

Articles from Age are provided here courtesy of American Aging Association

RESOURCES