Abstract
In earlier studies with the acetylcholine receptor (AcChoR) of Electrophorus electricus the rate and equilibrium constants for a model that relates the ligand binding to ion translocation were determined, and the dependence of these constants on the concentrations of carbamoylcholine and acetylcholine, over a 200- and 5000-fold range, respectively, could be predicted. AcChoR-controlled cation flux has now been measured in Torpedo californica vesicles by using a pulsed-quench-flow technique with a 2-msec time resolution. Torpedo vesicles on a weight basis may contain several hundred times more receptor sites than do E. electricus vesicles. Techniques have been developed to (i) correct for the kinetic heterogeneity of the vesicle population; (ii) use the inactivation of the receptor by its natural ligand to reduce influx rates at high ligand concentrations to a measurable level (this permitted JA, the influx rate coefficient before the onset of inactivation, to be measured); and (iii) determine the rate coefficients of two processes that lead to successive inactivations (desensitization) of the receptor and occur in different time regions. An extension of a model proposed for the E. electricus receptor accommodates the ion translocation in T. californica vesicles. The features in common are: (i) A rapid initial flux rate [JA(max) for T. californica is 310 sec-1; for E. electricus it is 7.5 sec-1]. These differences in flux rates are consistent with a difference in AcChoR density. (ii) A rapid inactivation process [α(max) for T. californica is 2 sec-1; for E. electricus it is 7 sec-1]. (iii) A slow AcChoR-controlled flux that continues after the rapid inactivation [JI(max) for T. californica is 1.3 sec-1; for E. electricus it is 0.015 sec-1]. The main difference between the flux in the two types of vesicle is the existence of a second, slower, inactivation process in T. californica with a rate coefficient, β, of 0.12 sec-1. The second process leads to undetectable flux activity during the time of observation (30 sec in 10 mM carbamoylcholine). These studies are also significant because fundamental differences may exist between the mechanism of AcChoR-controlled ion flux in synaptic (Torpedo) and conducting (E. electricus) membranes.
Keywords: carbamoylcholine, desensitization
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreasen T. J., McNamee M. G. Phospholipase A inhibition of acetylcholine receptor function in Torpedo californica membrane vesicles. Biochem Biophys Res Commun. 1977 Dec 7;79(3):958–965. doi: 10.1016/0006-291x(77)91203-7. [DOI] [PubMed] [Google Scholar]
- Aoshima H., Cash D. J., Hess G. P. Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: a minimal mechanism based on rate measurements in the millisecond to minute time region. Biochem Biophys Res Commun. 1980 Feb 12;92(3):896–904. doi: 10.1016/0006-291x(80)90787-1. [DOI] [PubMed] [Google Scholar]
- Aoshima H., Cash D. J., Hess G. P. Mechanism of inactivation (desensitization) of acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. Biochemistry. 1981 Jun 9;20(12):3467–3474. doi: 10.1021/bi00515a025. [DOI] [PubMed] [Google Scholar]
- Bernhardt J., Neumann E. Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3756–3760. doi: 10.1073/pnas.75.8.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulger J. E., Fu J. L., Hindy E. F., Silberstein R. L., Hess G. P. Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators. Kinetic studies. Biochemistry. 1977 Feb 22;16(4):684–692. doi: 10.1021/bi00623a020. [DOI] [PubMed] [Google Scholar]
- Cash D. J., Aoshima H., Hess G. P. Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: chemical kinetic measurements in the millisecond time region. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3318–3322. doi: 10.1073/pnas.78.6.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cash D. J., Hess G. P. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes. Proc Natl Acad Sci U S A. 1980 Feb;77(2):842–846. doi: 10.1073/pnas.77.2.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cash D. J., Hess G. P. Quenched flow technique with plasma membrane vesicles: acetylcholine receptor-mediated transmembrane ion flux. Anal Biochem. 1981 Mar 15;112(1):39–51. doi: 10.1016/0003-2697(81)90257-8. [DOI] [PubMed] [Google Scholar]
- Changeux J. P., Podleski T. R. On the excitability and cooperativity of the electroplax membrane. Proc Natl Acad Sci U S A. 1968 Mar;59(3):944–950. doi: 10.1073/pnas.59.3.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delegeane A. M., McNamee M. G. Independent activation of the acetylcholine receptor from Torpedo californica at two sites. Biochemistry. 1980 Mar 4;19(5):890–895. doi: 10.1021/bi00546a010. [DOI] [PubMed] [Google Scholar]
- Fersht A. R., Jakes R. Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique. Biochemistry. 1975 Jul 29;14(15):3350–3356. doi: 10.1021/bi00686a010. [DOI] [PubMed] [Google Scholar]
- Hess G. P., Andrews J. P. Functional acetylcholine receptor--electroplax membrane microsacs (vesicles): purification and characterization. Proc Natl Acad Sci U S A. 1977 Feb;74(2):482–486. doi: 10.1073/pnas.74.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess G. P., Andrews J. P., Struve G. E., Goombs S. E. Acetylcholine-receptor-mediated ion flux in electroplax membrane preparations. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4371–4375. doi: 10.1073/pnas.72.11.4371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess G. P., Aoshima H., Cash D. J., Lenchitz B. Specific reaction rate of acetylcholine receptor-controlled ion translocation: a comparison of measurements with membrane vesicles and with muscle cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1361–1365. doi: 10.1073/pnas.78.3.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess G. P., Cash D. J., Aoshima H. Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques. Nature. 1979 Nov 15;282(5736):329–331. doi: 10.1038/282329a0. [DOI] [PubMed] [Google Scholar]
- Hess G. P., Lipkowitz S., Struve G. E. Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): change in mechanism produced by asymmetrical distribution of sodium and potassium ions. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1703–1707. doi: 10.1073/pnas.75.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohanski R. A., Andrews J. P., Wins P., Eldefrawi M. E., Hess G. P. A simple quantitative assay of 125I-labeled alpha-bungarotoxin binding to soluble and membrane-bound acetylcholine receptor protein. Anal Biochem. 1977 Jun;80(2):531–539. doi: 10.1016/0003-2697(77)90676-5. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Moore H. P., Raftery M. A. Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4509–4513. doi: 10.1073/pnas.77.8.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau M., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. I. Pharmacological properties of the electroplaque. J Mol Biol. 1976 Sep 25;106(3):457–467. doi: 10.1016/0022-2836(76)90246-1. [DOI] [PubMed] [Google Scholar]
- NACHMANSOHN D. Metabolism and function of the nerve cell. Harvey Lect. 1953;49:57–99. [PubMed] [Google Scholar]
- Neubig R. R., Cohen J. B. Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. Biochemistry. 1980 Jun 10;19(12):2770–2779. doi: 10.1021/bi00553a036. [DOI] [PubMed] [Google Scholar]
- Sakmann B., Patlak J., Neher E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature. 1980 Jul 3;286(5768):71–73. doi: 10.1038/286071a0. [DOI] [PubMed] [Google Scholar]
- Sobel A., Weber M., Changeux J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977 Oct 17;80(1):215–224. doi: 10.1111/j.1432-1033.1977.tb11874.x. [DOI] [PubMed] [Google Scholar]
- Sugiyama H., Popot J. L., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. III. Pharmocological desensitization in vitro of the receptor-rich membrane fragments by cholinergic agonists. J Mol Biol. 1976 Sep 25;106(3):485–496. doi: 10.1016/0022-2836(76)90248-5. [DOI] [PubMed] [Google Scholar]
- Walker J. W., McNamee M. G., Pasquale E., Cash D. J., Hess G. P. Acetylcholine receptor inactivation in Torpedo californica electroplax membrane vesicles. Detection of two processes in the millisecond and second time regions. Biochem Biophys Res Commun. 1981 May 15;100(1):86–90. doi: 10.1016/s0006-291x(81)80066-6. [DOI] [PubMed] [Google Scholar]
