Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Feb;79(4):1088–1091. doi: 10.1073/pnas.79.4.1088

Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids.

M E Anderson, R D Allison, A Meister
PMCID: PMC345905  PMID: 6122208

Abstract

The reversible conversion of leukotriene C4 to leukotriene D4 and of the latter to leukotriene E4 were studied with highly purified homogeneous preparations of gamma-glutamyl transpeptidase, dipeptidase, and aminopeptidase M. The conversion of leukotriene C4 to leukotriene D4, catalyzed by gamma-glutamyl transpeptidase, is significantly more rapid when carried out in the presence of an amino acid mixture a closely approximating that found in blood plasma and is accompanied by gamma-glutamyl amino acid formation. Because gamma-glutamyl transpeptidase is bound to the external surface of cell membranes and thus is readily accessible to plasma amino acids, it appears that conversion of leukotriene C4 to leukotriene D4 under physiological conditions is coupled with the formation of gamma-glutamyl amino acids. The apparent Km value for leukotriene C4 in this reaction is about 6 X 10(-6) M, a value close to that found for glutathione. Conversion of leukotriene D4 to leukotriene C4 is effectively catalyzed by gamma-glutamyl transpeptidase in the presence of relatively low concentrations of glutathione. The conversion of leukotriene D4 to leukotriene E4 is catalyzed much more rapidly by renal dipeptidase than by renal aminopeptidase M. Incubation of leukotriene E4 with gamma-glutamyl transpeptidase and glutathione leads to formation of a compound with the properties of gamma-glutamyl leukotriene E4; this reaction is analogous to that shown previously in which gamma-glutamyl cystine is formed by transpeptidation between glutathione and cystine.

Full text

PDF
1088

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison R. D., Meister A. Evidence that transpeptidation is a significant function of gamma-glutamyl transpeptidase. J Biol Chem. 1981 Mar 25;256(6):2988–2992. [PubMed] [Google Scholar]
  2. Anderson M. E., Bridges R. J., Meister A. Direct evidence for inter-organ transport of glutathione and that the non-filtration renal mechanism for glutathione utilization involves gamma-glutamyl transpeptidase. Biochem Biophys Res Commun. 1980 Sep 30;96(2):848–853. doi: 10.1016/0006-291x(80)91433-3. [DOI] [PubMed] [Google Scholar]
  3. Bernström K., Hammarström S. Metabolism of leukotriene D by porcine kidney. J Biol Chem. 1981 Sep 25;256(18):9579–9582. [PubMed] [Google Scholar]
  4. Borgeat P., Sirois P. Leukotrienes: a major step in the understanding of immediate hypersensitivity reactions. J Med Chem. 1981 Feb;24(2):121–126. doi: 10.1021/jm00134a001. [DOI] [PubMed] [Google Scholar]
  5. Boyland E., Chasseaud L. F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219. doi: 10.1002/9780470122778.ch5. [DOI] [PubMed] [Google Scholar]
  6. Cagen L. M., Fales H. M., Pisano J. J. Formation of glutathione conjugates of prostaglandin A1 in human red blood cells. J Biol Chem. 1976 Nov 10;251(21):6550–6554. [PubMed] [Google Scholar]
  7. Cagen L. M., Pisano J. J. The glutathione conjugate of prostaglandin A1 is a better substrate than prostaglandin E for partially purified avian prostaglandin E 9-ketoreductase. Biochim Biophys Acta. 1979 Jun 21;573(3):547–551. doi: 10.1016/0005-2760(79)90228-5. [DOI] [PubMed] [Google Scholar]
  8. Clark D. A., Goto G., Marfat A., Corey E. J., Hammarström S., Samuelsson B. 11-Trans leukotriene C: a naturally occurring slow reacting substance. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1133–1139. doi: 10.1016/0006-291x(80)90537-9. [DOI] [PubMed] [Google Scholar]
  9. Dethmers J. K., Meister A. Glutathione export by human lymphoid cells: depletion of glutathione by inhibition of its synthesis decreases export and increases sensitivity to irradiation. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7492–7496. doi: 10.1073/pnas.78.12.7492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elce J. S. Metabolism of a glutathione conjugate of 2-hydroxyoestradiol by rat liver and kidney preparations in vitro. Biochem J. 1970 Mar;116(5):913–917. doi: 10.1042/bj1160913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffith O. W., Bridges R. J., Meister A. Formation of gamma-glutamycyst(e)ine in vivo is catalyzed by gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A. 1981 May;78(5):2777–2781. doi: 10.1073/pnas.78.5.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Griffith O. W., Meister A. Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sci U S A. 1979 Jan;76(1):268–272. doi: 10.1073/pnas.76.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffith O. W., Novogrodsky A., Meister A. Translocation of glutathione from lymphoid cells that have markedly different gamma-glutamyl transpeptidase activities. Proc Natl Acad Sci U S A. 1979 May;76(5):2249–2252. doi: 10.1073/pnas.76.5.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hammarström S. Metabolism of leukotriene C3 in the guinea pig. Identification of metabolites formed by lung, liver, and kidney. J Biol Chem. 1981 Sep 25;256(18):9573–9578. [PubMed] [Google Scholar]
  16. Hammarström S., Murphy R. C., Samuelsson B., Clark D. A., Mioskowski C., Corey E. J. Structure of leukotriene C. Identification of the amino acid part. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1266–1272. doi: 10.1016/0006-291x(79)91203-8. [DOI] [PubMed] [Google Scholar]
  17. Hammarström S., Samuelsson B., Clark D. A., Goto G., Marfat A., Mioskowski C., Corey E. J. Stereochemistry of leukotriene C-1. Biochem Biophys Res Commun. 1980 Feb 12;92(3):946–953. doi: 10.1016/0006-291x(80)90794-9. [DOI] [PubMed] [Google Scholar]
  18. Hedqvist P., Dahlén S. E., Gustafsson L., Hammarström S., Samuelsson B. Biological profile of leukotrienes C4 and D4. Acta Physiol Scand. 1980 Nov;110(3):331–333. doi: 10.1111/j.1748-1716.1980.tb06676.x. [DOI] [PubMed] [Google Scholar]
  19. Jellinck P. H., Lewis J., Boston F. Further evidence for the formation of an estrogen-peptide conjugate by rat liver in vitro. Steroids. 1967 Sep;10(3):329–346. doi: 10.1016/0039-128x(67)90058-x. [DOI] [PubMed] [Google Scholar]
  20. Kuss E. Wasserlösliche Metabolit e des Ostradiols-17beta, II. Hoppe Seylers Z Physiol Chem. 1968 Sep;349(9):1234–1236. [PubMed] [Google Scholar]
  21. Kuss E. Wasserlösliche Metabolite des 17-beta-Ostradiols. Hoppe Seylers Z Physiol Chem. 1967 Dec;348(12):1707–1708. [PubMed] [Google Scholar]
  22. Kuss E. Wasserlösliche Metabolite des Ostradiols-17-beta. 3. Trennung und Identifizierung der 1- und 4-Glutathionthioäther von 2.3-Dihydroxy-östratrienen. Hoppe Seylers Z Physiol Chem. 1969 Jan;350(1):95–97. [PubMed] [Google Scholar]
  23. Lewis R. A., Drazen J. M., Austen K. F., Clark D. A., Corey E. J. Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occurring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun. 1980 Sep 16;96(1):271–277. doi: 10.1016/0006-291x(80)91210-3. [DOI] [PubMed] [Google Scholar]
  24. Mathews W. R., Rokach J., Murphy R. C. Analysis of leukotrienes by high-pressure liquid chromatography. Anal Biochem. 1981 Nov 15;118(1):96–101. doi: 10.1016/0003-2697(81)90162-7. [DOI] [PubMed] [Google Scholar]
  25. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  26. Murphy R. C., Hammarström S., Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4275–4279. doi: 10.1073/pnas.76.9.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
  28. Orning L., Hammarström S. Inhibition of leukotriene C and leukotriene D biosynthesis. J Biol Chem. 1980 Sep 10;255(17):8023–8026. [PubMed] [Google Scholar]
  29. Orning L., Hammarström S., Samuelsson B. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2014–2017. doi: 10.1073/pnas.77.4.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Parker C. W., Fischman C. M., Wedner H. J. Relationship of biosynthesis of slow reacting substance to intracellular glutathione concentrations. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6870–6873. doi: 10.1073/pnas.77.11.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Samuelsson B., Borgeat P., Hammarström S., Murphy R. C. Leukotrienes: a new group of biologically active compounds. Adv Prostaglandin Thromboxane Res. 1980;6:1–18. [PubMed] [Google Scholar]
  32. Tate S. S., Meister A. Identity of maleate-stimulated glutaminase with gamma-glutamyl transpeptidase in rat kidney. J Biol Chem. 1975 Jun 25;250(12):4619–4627. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES