Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Feb;79(4):1166–1170. doi: 10.1073/pnas.79.4.1166

ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle.

C S Lai, L E Hopwood, J S Hyde, S Lukiewicz
PMCID: PMC345922  PMID: 6280170

Abstract

Magnetic interactions between dissolved oxygen and nitroxide radical spin probes lead to broadening of the ESR lines. We have used a closed-chamber method based on this property to determine the maximum rate of O2 uptake per cell (Vmax per cell) in cultured mammalian cells. A suitable spin probe and a cell suspension are mixed in an aerated medium, and the rate of disappearance of dissolved O2 is measured. The effects of temperature, pH, and microwave power on the determination of dissolved oxygen in solution were studied. For asynchronous Chinese hamster ovary cells, oxygen uptake is 3.8 X 10(7) oxygen molecules per cell per sec and appears to be enzymatically limited at oxygen concentrations greater than 10 microM. About 5-10 X 10(5) cells were used for each measurement, making it possible to study mitotically synchronized cells. Using this method, we have found that Vmax per unit cell volume changes during the cell cycle of Chinese hamster ovary cells from a minimum in mitosis to maxima in both G1 and late S phases. Advantages and limitations of spin probes for studying the O2 uptake of intact cells are discussed.

Full text

PDF
1166

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backer J. M., Budker V. G., Eremenko S. I., Molin Y. N. Detection of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals. Biochim Biophys Acta. 1977 Apr 11;460(1):152–156. doi: 10.1016/0005-2728(77)90161-x. [DOI] [PubMed] [Google Scholar]
  2. Boag J. W. Cell respiration as a function of oxygen tension. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;18(5):475–478. doi: 10.1080/09553007014551361. [DOI] [PubMed] [Google Scholar]
  3. Bârzu O. Spectrophotometric assay of oxygen consumption. Methods Enzymol. 1978;54:485–498. doi: 10.1016/s0076-6879(78)54029-9. [DOI] [PubMed] [Google Scholar]
  4. Chance B., Oshino N., Sugano T., Mayevsky A. Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol. 1973;37A:277–292. doi: 10.1007/978-1-4684-3288-6_35. [DOI] [PubMed] [Google Scholar]
  5. Chance B., Oshino R., Oshino N. Sensitive oxygen assay method by luminous bacteria. Methods Enzymol. 1978;54:499–505. doi: 10.1016/s0076-6879(78)54030-5. [DOI] [PubMed] [Google Scholar]
  6. Creanor J. Oxygen uptake during the cell cycle of the fission yeast Schizosaccharomyces pombe. J Cell Sci. 1978 Oct;33:399–411. doi: 10.1242/jcs.33.1.399. [DOI] [PubMed] [Google Scholar]
  7. Dewey W. C., Fuhr M. A. Quantification of mitochondria during the cell cycle of Chinese hamster cells. Exp Cell Res. 1976 Apr;99(1):23–30. doi: 10.1016/0014-4827(76)90675-3. [DOI] [PubMed] [Google Scholar]
  8. Gerschenson L. E., Strasser F. F., Rounds D. E. Variations in the nucleoside triphosphate content and oxygen uptake of synchronized HeLa S3 cultures. Life Sci. 1965 May;4(9):927–935. doi: 10.1016/0024-3205(65)90192-x. [DOI] [PubMed] [Google Scholar]
  9. Gurbiel R., Cieszka K., Pajak S., Subczyński W., Lukiewicz S. Detectability of radiation damage to melanoma cells using ESR spectroscopy. A review. Folia Histochem Cytochem (Krakow) 1980;18(2):87–99. [PubMed] [Google Scholar]
  10. Knopp J. A., Longmuir I. S. Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta. 1972 Sep 15;279(2):393–397. doi: 10.1016/0304-4165(72)90158-4. [DOI] [PubMed] [Google Scholar]
  11. Lai C. S., Hopwood L. E., Swartz H. M. Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle. Biochim Biophys Acta. 1980 Oct 16;602(1):117–126. doi: 10.1016/0005-2736(80)90294-1. [DOI] [PubMed] [Google Scholar]
  12. Miyamoto K., Terasaki T. Mechanism of the linkage between te electrophoretic mobility and oxygen uptake of ascites tumor cells. Cancer Res. 1980 Dec;40(12):4751–4757. [PubMed] [Google Scholar]
  13. Petersen L. C., Degn H., Nicholls P. Kinetics of the cytochrome c oxidase and reductase reactions in energized and de-energized mitochondria. Can J Biochem. 1977 Jul;55(7):706–713. doi: 10.1139/o77-102. [DOI] [PubMed] [Google Scholar]
  14. Robbins E., Morrill G. A. Oxygen uptake during the HeLa cell life cycle and its correlation with macromolecular synthesis. J Cell Biol. 1969 Dec;43(3):629–633. doi: 10.1083/jcb.43.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sarna T., Duleba A., Korytowski W., Swartz H. Interaction of melanin with oxygen. Arch Biochem Biophys. 1980 Mar;200(1):140–148. doi: 10.1016/0003-9861(80)90340-9. [DOI] [PubMed] [Google Scholar]
  16. Subczynski W. K., Hyde J. S. The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method. Biochim Biophys Acta. 1981 May 6;643(2):283–291. [PubMed] [Google Scholar]
  17. Wilson D. F., Erecińska M., Drown C., Silver I. A. The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys. 1979 Jul;195(2):485–493. doi: 10.1016/0003-9861(79)90375-8. [DOI] [PubMed] [Google Scholar]
  18. Windrem D. A., Plachy W. Z. The diffusion-solubility of oxygen in lipid bilayers. Biochim Biophys Acta. 1980 Aug 14;600(3):655–665. doi: 10.1016/0005-2736(80)90469-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES