Abstract
Two mutagen-sensitive loci of Drosophila melanogaster, mus-105 and mus-109, previously identified by viable alleles, are shown to specify essential functions. Lethal alleles at the loci produce larvae that have degenerate imaginal discs and die at the larva-pupa boundary. Our data suggest that the causes of lethality are intolerable levels of cell death produced by high frequencies of chromosome aberrations (in excess of 0.5 aberration per cell per cycle). The pattern of aberrations is a locus-specific character. In mus-105 mutants the most common aberrations are breaks and exchanges in euchromatic portions of the genome whereas in mus-109 mutants the most common aberrations are breaks at heterochromatin-euchromatin junctions. The sensitivity of these junctions to breakage in mus-109 mutants is a property of all such junctions whether natural or produced by a rearrangement that juxtaposes heterochromatin and euchromatin. Larvae carrying the combination of two viable mutants, mus-105A1 mus-109D1, die at the larva-pupa boundary and display a high frequency of aberrations (0.7 per cell vs. 0.075 for either mutant alone) clustered at euchromatin-heterochromatin junctions. This synergistic interaction suggests there is a class of lesions that can be repaired by both mus-105+ and mus-109+. Thus, the apparent euchromatic specificity of mus-105+, which was inferred from the pattern of predominantly euchromatic breakage observed in mus-105 mus-109+ flies, is in fact generated by the wild-type function of mus-109+ masking an effect of mus-105 in the heterochromatin. The fact that lethal mutants at the mus-105 and mus-109 loci have small imaginal discs coupled with the observation of a maternal effect of mus-105 suggests a paradigm for the control of cell division during the life cycle of Drosophila.
Keywords: mutagen-sensitive mutants, chromosome aberrations, mitotic cell cycle mutants, late larval lethals
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arlett C. F., Lehmann A. R. Human disorders showing increased sensitivity to the induction of genetic damage. Annu Rev Genet. 1978;12:95–115. doi: 10.1146/annurev.ge.12.120178.000523. [DOI] [PubMed] [Google Scholar]
- Baker B. S., Carpenter A. T., Ripoll P. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER. Genetics. 1978 Nov;90(3):531–578. doi: 10.1093/genetics/90.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker B. S., Gatti M., Carpenter A. T., Pimpinelli S., Smith D. A. Effects of recombination-deficient and repair-deficient loci on meiotic and mitotic chromosome behavior in Drosophila melanogaster. Basic Life Sci. 1980;15:189–208. doi: 10.1007/978-1-4684-3842-0_13. [DOI] [PubMed] [Google Scholar]
- Baker B. S., Smith D. A. The effects of mutagen-sensitive mutants of Drosophila melanogaster in nonmutagenized cells. Genetics. 1979 Jul;92(3):833–847. doi: 10.1093/genetics/92.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostock C. J., Christie S. Analysis of the frequency of sister chromatid exchange in different regions of chromosomes of the kangaroo rat (Dipodomys ordii). Chromosoma. 1976 Jul 8;56(3):275–287. doi: 10.1007/BF00293191. [DOI] [PubMed] [Google Scholar]
- Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. B., Setlow R. B. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics. 1976 Nov;84(3):507–526. doi: 10.1093/genetics/84.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carrano A. V., Wolff S. Distribution of sister chromatid exchanges in the euchromatin and heterochromatin of the Indian muntjac. Chromosoma. 1975 Dec 29;53(4):361–369. doi: 10.1007/BF00294083. [DOI] [PubMed] [Google Scholar]
- Gatti M. Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1377–1381. doi: 10.1073/pnas.76.3.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatti M., Pimpinelli S., Baker B. S. Relationships among chromatid interchanges, sister chromatid exchanges, and meiotic recombination in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1575–1579. doi: 10.1073/pnas.77.3.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatti M., Pimpinelli S., De Marco A., Tanzarella C. Chemical induction of chromosome aberrations in somatic cells of Drosophila melanogaster. Mutat Res. 1975 Dec;33(2-3):201–212. doi: 10.1016/0027-5107(75)90196-7. [DOI] [PubMed] [Google Scholar]
- Gatti M., Santini G., Pimpinelli S., Olivieri G. Lack of spontaneous sister chromatid exchanges in somatic cells of Drosophila melanogaster. Genetics. 1979 Feb;91(2):255–274. doi: 10.1093/genetics/91.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatti M., Tanzarella C., Olivieri G. Analysis of the chromosome aberrations induced by x-rays in somatic cells of Drosophila melanogaster. Genetics. 1974 Aug;77(4):701–719. doi: 10.1093/genetics/77.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- German J., Crippa L. P., Bloom D. Bloom's syndrome. III. Analysis of the chromosome aberration characteristic of this disorder. Chromosoma. 1974;48(4):361–366. doi: 10.1007/BF00290993. [DOI] [PubMed] [Google Scholar]
- Pimpinelli S., Pignone D., Santini G., Gatti M., Olivieri G. Mutagen specificity in the induction of chromosomal aberrations in somatic cells of Drosophila melanogaster. Genetics. 1977 Feb;85(2):249–257. doi: 10.1093/genetics/85.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. M., German J. Bloom's syndrome and Fanconi's anemia: demonstration of two distinctive patterns of chromosome disruption and rearrangement. Humangenetik. 1974;25(4):299–306. doi: 10.1007/BF00336905. [DOI] [PubMed] [Google Scholar]
- Shearn A., Rice T., Garen A., Gehring W. Imaginal disc abnormalities in lethal mutants of Drosophila. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2594–2598. doi: 10.1073/pnas.68.10.2594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiraishi Y., Sandberg A. A. The relationship between sister chromatid exchanges and chromosome aberrations in Bloom's syndrome. Cytogenet Cell Genet. 1977;18(1):13–23. doi: 10.1159/000130744. [DOI] [PubMed] [Google Scholar]
- Simchen G. Cell cycle mutants. Annu Rev Genet. 1978;12:161–191. doi: 10.1146/annurev.ge.12.120178.001113. [DOI] [PubMed] [Google Scholar]
- Smith P. D. Mutagen sensitivity of Drosophila melanogaster. III. X-linked loci governing sensitivity to methyl methanesulfonate. Mol Gen Genet. 1976 Nov 24;149(1):73–85. doi: 10.1007/BF00275962. [DOI] [PubMed] [Google Scholar]
- Stewart M., Murphy C., Fristrom J. W. The recovery and preliminary characterization of X chromosome mutants affecting imaginal discs of Drosophila melanogaster. Dev Biol. 1972 Jan;27(1):71–83. doi: 10.1016/0012-1606(72)90113-3. [DOI] [PubMed] [Google Scholar]




