Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(5):1433–1437. doi: 10.1073/pnas.79.5.1433

Hydrolysis of human platelet membrane glycoproteins with a Serratia marcescens metalloprotease: Effect on response to thrombin and von Willebrand factor

Herbert A Cooper 1,2,3, William P Bennett 1,2,3, Gilbert C White II 1,2,3, Robert H Wagner 1,2,3
PMCID: PMC345987  PMID: 7041120

Abstract

Metalloproteases from at least two Gram-negative organisms selectively hydrolyze the surface of human fixed washed platelets. The protease-treated platelets lose their ability to aggregate with bovine von Willebrand factor and human von Willebrand factor plus ristocetin. The present study reports the membrane glycoprotein alterations and loss of platelet function that occur after incubation of fresh washed human platelets with a purified protease produced by Serratia marcescens. The studies were undertaken in order to examine, using the Serratia protease as an enzymatic probe, the relationship between externally oriented glycoproteins and two known aggregating agents, bovine von Willebrand factor and thrombin. Platelet membrane glycoproteins were analyzed after discontinuous NaDodSO4/polyacrylamide gel electrophoresis using both staining with periodic acid-Schiff reagent and autoradiography of 3H-labeled platelets. Both methods of detection demonstrated that at Serratia protease concentrations above 0.6 μg/ml there was hydrolysis within 3 min of a membrane glycoprotein (Mr 185,000) corresponding to GPIb in control platelets. The loss of GPIb was accompanied by the appearance in the platelet supernatant of a glycopeptide (Mr 156,000). Under reducing conditions, the hydrolyzed membrane glycopeptide in the supernatant had a consistently faster migration (Mr 149,000). Platelets treated with Serratia protease at concentrations sufficient to give maximal cleavage of GPIb were unresponsive to bovine von Willebrand factor and did not aggregate or release [14C]serotonin at doses of von Willebrand factor up to 0.33 unit/ml. On the other hand, the response to bovine α-thrombin was only minimally impaired by treatment with Serratia protease. These results implicate GPIb in the response by platelets to bovine von Willebrand factor but suggest that surface components other than GPIb play a major role in the response by platelets to thrombin.

Keywords: platelets, proteases, platelet aggregation, serotonin release

Full text

PDF
1433

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berndt M. C., Phillips D. R. Purification and preliminary physicochemical characterization of human platelet membrane glycoprotein V. J Biol Chem. 1981 Jan 10;256(1):59–65. [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Clemetson K. J., Capitanio A., Lüscher E. F. High resolution two-dimensional gel electrophoresis of the proteins and glycoproteins of human blood platelets and platelet membranes. Biochim Biophys Acta. 1979 May 3;553(1):11–24. doi: 10.1016/0005-2736(79)90027-0. [DOI] [PubMed] [Google Scholar]
  4. Clemetson K. J., Naim H. Y., Lüscher E. F. Relationship between glycocalicin and glycoprotein Ib of human platelets. Proc Natl Acad Sci U S A. 1981 May;78(5):2712–2716. doi: 10.1073/pnas.78.5.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clemetson K. J., Pfueller S. L., Luscher E. F., Jenkins C. S. Isolation of the membrane glycoproteins of human blood platelets by lectin affinity chromatography. Biochim Biophys Acta. 1977 Feb 4;464(3):493–508. doi: 10.1016/0005-2736(77)90025-6. [DOI] [PubMed] [Google Scholar]
  6. Cooper H. A., Bennett W. P., Kreger A., Lyerly D., Wagner R. H. The effect of extracellular proteases from gran-negative bacteria on the interaction of von Willebrand factor with human platelets. J Lab Clin Med. 1981 Mar;97(3):379–389. [PubMed] [Google Scholar]
  7. Cooper H. A., Clemetson K. J., Lüscher E. F. Human platelet membrane receptor for bovine von Willebrand factor (platelet aggregating factor): an integral membrane glycoprotein. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1069–1073. doi: 10.1073/pnas.76.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ganguly P., Gould N. L. Thrombin receptors of human platelets: thrombin binding and antithrombin properties of glycoprotein I. Br J Haematol. 1979 May;42(1):137–145. doi: 10.1111/j.1365-2141.1979.tb03706.x. [DOI] [PubMed] [Google Scholar]
  9. George J. N. Studies on platelet plasma membranes. IV. Quantitative analysis of platelet membrane glycoproteins by (125I)-diazotized diiodosulfanilic acid labeling and SDS-polyacrylamide gel electrophoresis. J Lab Clin Med. 1978 Sep;92(3):430–446. [PubMed] [Google Scholar]
  10. Hagen I., Nurden A., Bjerrum O. J., Solum N. O., Caen J. Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann's thrombasthenia and Bernard-Soulier syndrome. J Clin Invest. 1980 Mar;65(3):722–731. doi: 10.1172/JCI109719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holahan J. R., White G. C., 2nd Heterogeneity of membrane surface proteins in Glanzmann's thrombasthenia. Blood. 1981 Jan;57(1):174–181. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Moake J. L., Olson J. D., Troll J. H., Tang S. S., Funicella T., Peterson D. M. Binding of radioiodinated human von Willebrand factor to Bernard-Soulier, thrombasthenic and von Willebrand's disease platelets. Thromb Res. 1980 Jul 1;19(1-2):21–27. doi: 10.1016/0049-3848(80)90400-4. [DOI] [PubMed] [Google Scholar]
  14. Mosher D. F., Vaheri A., Choate J. J., Gahmberg C. G. Action of thrombin on surface glycoproteins of human platelets. Blood. 1979 Mar;53(3):437–445. [PubMed] [Google Scholar]
  15. Nachman R. L., Kinoshita T., Ferris B. Structural analysis of human platelet membrane glycoprotein I complex. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2952–2954. doi: 10.1073/pnas.76.6.2952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nurden A. T., Caen J. P. Membrane glycoproteins and human platelet function. Br J Haematol. 1978 Feb;38(2):155–160. doi: 10.1111/j.1365-2141.1978.tb01031.x. [DOI] [PubMed] [Google Scholar]
  17. Okumura I., Lombart C., Jamieson G. A. Platelet glycocalicin. II. Purification and characterization. J Biol Chem. 1976 Oct 10;251(19):5950–5955. [PubMed] [Google Scholar]
  18. Okumura T., Hasitz M., Jamieson G. A. Platelet glycocalicin. Interaction with thrombin and role as thrombin receptor of the platelet surface. J Biol Chem. 1978 May 25;253(10):3435–3443. [PubMed] [Google Scholar]
  19. Okumura T., Jamieson G. A. Platelet glycocalicin: a single receptor for platelet aggregation induced by thrombin or ristocetin. Thromb Res. 1976 May;8(5):701–706. doi: 10.1016/0049-3848(76)90250-4. [DOI] [PubMed] [Google Scholar]
  20. Pepper D. S., Jamieson G. A. Studies on glycoproteins. 3. Isolation of sialylglycopeptides from human platelet membranes. Biochemistry. 1969 Aug;8(8):3362–3369. doi: 10.1021/bi00836a034. [DOI] [PubMed] [Google Scholar]
  21. Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Identification of a proteolytic substrate for thrombin. Biochem Biophys Res Commun. 1977 Apr 25;75(4):940–947. doi: 10.1016/0006-291x(77)91473-5. [DOI] [PubMed] [Google Scholar]
  22. Phillips D. R., Jakábová M. Ca2+-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+. J Biol Chem. 1977 Aug 25;252(16):5602–5605. [PubMed] [Google Scholar]
  23. Solum N. O., Hagen I., Gjemdal T. Platelt membrane glycoproteins and the interaction between bovine factor VIII related protein and human platelets. Thromb Haemost. 1977 Dec 15;38(4):914–923. [PubMed] [Google Scholar]
  24. Solum N. O., Hagen I., Sletbakk T. Further evidence for glycocalicin being derived from a larger amphiphilic platelet membrane glycoprotein. Thromb Res. 1980 Jun 15;18(6):773–785. doi: 10.1016/0049-3848(80)90200-5. [DOI] [PubMed] [Google Scholar]
  25. Tam S. W., Fenton J. W., 2nd, Detwiler T. C. Platelet thrombin receptors. Binding of alpha-thrombin is coupled to signal generation by a chymotrypsin-sensitive mechanism. J Biol Chem. 1980 Jul 25;255(14):6626–6632. [PubMed] [Google Scholar]
  26. White G. C., 2nd Calcium-dependent proteins in platelets: response of calcium-activated protease in normal and thrombasthenic platelets to aggregating agents. Biochim Biophys Acta. 1980 Aug 1;631(1):130–138. doi: 10.1016/0304-4165(80)90061-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES