Abstract
The presence of substance P-immunoreactive (SPI) varicose nerve networks and nerve fiber bundles in guinea pig prevertebral sympathetic ganglia has been confirmed by fluorescence immunohistochemistry. No SPI neurons have been found in sympathetic ganglia, including lumbar paravertebral ganglia. Peroxidase-antiperoxidase immunocytochemical methods have shown that SPI nerve terminal varicosities in the inferior mesenteric ganglion (IMG) form morphologically identifiable synapses on dendritic shafts. Cutting the intermesenteric nerve produces no obvious change in SP immunoreactivity in the IMG; cutting the lumbar splanchnic nerves produces nearly total depletion which becomes virtually complete if the two lesions are combined; SP immunoreactivity accumulates in the central ends of the lumbar splanchnic nerves and in the cranial end of the intermesenteric nerve. Cutting hypogastric nerves or colonic branches of the IMG leads to accumulation of SP immunoreactivity in their ganglionic stumps and to build-up (colonic nerve lesion) rather than depletion of SP immunoreactivity in the IMG. Capsaicin treatment leads to total loss of SP immunoreactivity from the prevertebral ganglia and dorsal root ganglia, severe depletion in laminae I and II and dorsolateral fasciculus of the spinal cord, and total loss from perivascular and paravascular networks of the ileum and mesentery, with sparing of the SP immunoreactivity of the enteric nerve plexuses. Capsaicin is thought to deplete sensory neurons selectively. Removal of the spinal cord below T7 without damage to the dorsal root ganglia leaves the intraganglionic SPI nerve networks and bundles intact. We conclude that these are derived from peripheral processes of sensory neurons and we propose that the SPI synapses in the IMG arise from collateral branches of these sensory peripheral processes. This implies a novel role for these processes, in forming intraganglionically in the prevertebral ganglia synapses which may take part in the reflex control of the viscera, independently of the central nervous system.
Keywords: immunofluorescence, immunocytochemistry, prevertebral ganglia, capsaicin, spinal cord lesion
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barber R. P., Vaughn J. E., Slemmon J. R., Salvaterra P. M., Roberts E., Leeman S. E. The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J Comp Neurol. 1979 Mar 15;184(2):331–351. doi: 10.1002/cne.901840208. [DOI] [PubMed] [Google Scholar]
- Costa M., Cuello A. C., Furness J. B., Franco R. Distribution of enteric neurons showing immunoreactivity for substance P in the guinea-pig ileum. Neuroscience. 1980;5(2):323–331. doi: 10.1016/0306-4522(80)90108-6. [DOI] [PubMed] [Google Scholar]
- Crowcroft P. J., Holman M. E., Szurszewski J. H. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol. 1971 Dec;219(2):443–461. doi: 10.1113/jphysiol.1971.sp009671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuello A. C., Del Fiacco M., Paxinos G. The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res. 1978 Sep 8;152(3):499–500. doi: 10.1016/0006-8993(78)91105-8. [DOI] [PubMed] [Google Scholar]
- Cuello A. C., Galfre G., Milstein C. Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3532–3536. doi: 10.1073/pnas.76.7.3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuello A. C., Gamse R., Holzer P., Lembeck F. Substance P immunoreactive neurons following neonatal administration of capsaicin. Naunyn Schmiedebergs Arch Pharmacol. 1981 Jan;315(3):185–194. doi: 10.1007/BF00499834. [DOI] [PubMed] [Google Scholar]
- Cuello A. C., Jessell T. M., Kanazawa I., Iversen L. L. Substance P: localization in synaptic vesicles in rat central nervous system. J Neurochem. 1977 Oct;29(4):747–751. doi: 10.1111/j.1471-4159.1977.tb07795.x. [DOI] [PubMed] [Google Scholar]
- Cuello A. C., Milstein C., Priestley J. V. Use of monoclonal antibodies in immunocytochemistry with special reference to the central nervous system. Brain Res Bull. 1980 Sep-Oct;5(5):575–587. doi: 10.1016/0361-9230(80)90264-6. [DOI] [PubMed] [Google Scholar]
- Dalsgaard C. J., Elfvin L. G. Spinal origin of preganglionic fibers projecting onto the superior cervical ganglion and inferior mesenteric ganglion of the guinea pig, as demonstrated by the horseradish peroxidase technique. Brain Res. 1979 Aug 17;172(1):139–143. doi: 10.1016/0006-8993(79)90901-6. [DOI] [PubMed] [Google Scholar]
- Dun N. J., Karczmar A. G. Actions of substance P on sympathetic neurons. Neuropharmacology. 1979 Feb;18(2):215–218. doi: 10.1016/0028-3908(79)90064-9. [DOI] [PubMed] [Google Scholar]
- Elfvin L. G., Dalsgaard C. J. Retrograde axonal transport of horseradish perioxidase in afferent fibers of the inferior mesenteric ganglion of the guinea pig. Identification of the cells of origin in dorsal root ganglia. Brain Res. 1977 Apr 22;126(1):149–153. doi: 10.1016/0006-8993(77)90221-9. [DOI] [PubMed] [Google Scholar]
- Franco R., Costa M., Furness J. B. Evidence for the release of endogenous substance P from intestinal nerves. Naunyn Schmiedebergs Arch Pharmacol. 1979 Apr;306(3):195–201. doi: 10.1007/BF00507103. [DOI] [PubMed] [Google Scholar]
- Gamse R., Wax A., Zigmond R. E., Leeman S. E. Immunoreactive substance P in sympathetic ganglia: distribution and sensitivity towards capsaicin. Neuroscience. 1981;6(3):437–441. doi: 10.1016/0306-4522(81)90136-6. [DOI] [PubMed] [Google Scholar]
- Gamse R., Wax A., Zigmond R. E., Leeman S. E. Immunoreactive substance P in sympathetic ganglia: distribution and sensitivity towards capsaicin. Neuroscience. 1981;6(3):437–441. doi: 10.1016/0306-4522(81)90136-6. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Elfvin L. G., Schultzberg M., Goldstein M., Nilsson G. On the occurrence of substance P-containing fibers in sympathetic ganglia: immunohistochemical evidence. Brain Res. 1977 Aug 19;132(1):29–41. doi: 10.1016/0006-8993(77)90704-1. [DOI] [PubMed] [Google Scholar]
- Hökfelt T., Kellerth J. O., Nilsson G., Pernow B. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 1975 Dec 19;100(2):235–252. doi: 10.1016/0006-8993(75)90481-3. [DOI] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N., Brownfield M. S. Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature. 1980 Nov 27;288(5789):380–382. doi: 10.1038/288380a0. [DOI] [PubMed] [Google Scholar]
- Jan Y. N., Jan L. Y., Kuffler S. W. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1501–1505. doi: 10.1073/pnas.76.3.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jancsó N., Jancsó-Gábor A., Szolcsányi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother. 1967 Sep;31(1):138–151. doi: 10.1111/j.1476-5381.1967.tb01984.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessell T. M., Iversen L. L., Cuello A. C. Capsaicin-induced depletion of substance P from primary sensory neurones. Brain Res. 1978 Aug 18;152(1):183–188. doi: 10.1016/0006-8993(78)90146-4. [DOI] [PubMed] [Google Scholar]
- Jessen K. R., Polak J. M., Van Noorden S., Bloom S. R., Burnstock G. Peptide-containing neurones connect the two ganglionated plexuses of the enteric nervous system. Nature. 1980 Jan 24;283(5745):391–393. doi: 10.1038/283391a0. [DOI] [PubMed] [Google Scholar]
- Kreulen D. L., Szurszewski J. H. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo-colonic inhibitory reflex. J Physiol. 1979 Oct;295:21–32. doi: 10.1113/jphysiol.1979.sp012952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ljungdahl A., Hökfelt T., Nilsson G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat--I. Cell bodies and nerve terminals. Neuroscience. 1978;3(10):861–943. doi: 10.1016/0306-4522(78)90116-1. [DOI] [PubMed] [Google Scholar]
- Neild T. O. Slowly-developing depolarization of neurones in the guinea-pig inferior mesenteric ganglion following repetitive stimulation of the preganglionic nerves. Brain Res. 1978 Jan 27;140(2):231–239. doi: 10.1016/0006-8993(78)90457-2. [DOI] [PubMed] [Google Scholar]
- Pickel V. M., Reis D. J., Leeman S. E. Ultrastructural localization of substance P in neurons of rat spinal cord. Brain Res. 1977 Feb 25;122(3):534–540. doi: 10.1016/0006-8993(77)90463-2. [DOI] [PubMed] [Google Scholar]
- Schultzberg M., Hökfelt T., Nilsson G., Terenius L., Rehfeld J. F., Brown M., Elde R., Goldstein M., Said S. Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neuroscience. 1980;5(4):689–744. doi: 10.1016/0306-4522(80)90166-9. [DOI] [PubMed] [Google Scholar]
- Schultzberg M., Hökfelt T., Terenius L., Elfvin L. G., Lundberg J. M., Brandt J., Elde R. P., Goldstein M. Enkephalin immunoreactive nerve fibres and cell bodies in sympathetic ganglia of the guinea-pig and rat. Neuroscience. 1979;4(2):249–270. doi: 10.1016/0306-4522(79)90087-3. [DOI] [PubMed] [Google Scholar]
- Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
- Szurszewski J. H., Weems W. A. A study of peripheral input to and its control by post-ganglionic neurones of the inferior mesenteric ganglion. J Physiol. 1976 Apr;256(3):541–556. doi: 10.1113/jphysiol.1976.sp011338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ungváry G., Léránth C. Termination in the prevertebral abdominal sympathetic ganglia of axons arising from the local (terminal) vegetative plexus of visceral organs. Peripheral reflex arcs. Z Zellforsch Mikrosk Anat. 1970;110(2):185–191. doi: 10.1007/BF00335524. [DOI] [PubMed] [Google Scholar]
- V Euler U. S., Gaddum J. H. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931 Jun 6;72(1):74–87. doi: 10.1113/jphysiol.1931.sp002763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weems W. A., Szurszewski J. H. An intracellular analysis of some intrinsic factors controlling neural output from inferior mesenteric ganglion of guinea pigs. J Neurophysiol. 1978 Mar;41(2):305–321. doi: 10.1152/jn.1978.41.2.305. [DOI] [PubMed] [Google Scholar]
- Zelená J., Soukup T. The differentiation of intrafusal fibre types in rat muscle spindles after motor denervation. Cell Tissue Res. 1974;153(1):115–136. doi: 10.1007/BF00225450. [DOI] [PubMed] [Google Scholar]


