Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):1756–1760. doi: 10.1073/pnas.79.6.1756

Substrate binding affinity changes in mitochondrial energy-linked reactions.

Y Hatefi, T Yagi, D C Phelps, S Y Wong, S B Vik, Y M Galante
PMCID: PMC346059  PMID: 6952227

Abstract

The effects of uncouplers and valinomycin plus nigericin (in the presence of K+) were studied on the apparent Km for substrates and apparent Vmax of the following energy-linked reactions catalyzed by submitochondrial particles: oxidative phosphorylation, NTP-33Pi exchange, ATP-driven electron transfer from succinate to NAD, and respiration-driven transhydrogenation from NADH to 3-acetylpyridine adenine dinucleotide phosphate. In all cases, partially uncoupling (up to 90%) concentrations of uncouplers of valinomycin plus nigericin were found to decrease apparent Vmax and to increase apparent Km. Results plotted as ln (Vmax/Km) versus the concentration of uncouplers or ionophores showed a linear decrease of the former as a function of increasing perturbant concentration (i.e., decreasing free energy). Because Vmax/Km may be considered as a measure of the apparent first-order rate constant for enzyme-substrate interaction and reflects the affinity between enzyme and substrate to form a complex, the results are consistent with the interpretation that membrane energization leads to a change in enzyme conformation with the resultant increase in enzyme-substrate affinity and facilitation of the reaction rate under consideration. The significance of these findings with respect to the mechanism of action of the energy-transducing systems studied is discussed.

Full text

PDF
1756

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird B. A., Hammes G. G. Structure of oxidative- and photo-phosphorylation coupling factor complexes. Biochim Biophys Acta. 1979 Jul 3;549(1):31–53. doi: 10.1016/0304-4173(79)90017-x. [DOI] [PubMed] [Google Scholar]
  2. Bertina R. M., Schrier P. I., Slater E. C. The binding of aurovertin to mitochondria, and its effect on mitochondrial respiration. Biochim Biophys Acta. 1973 Jun 28;305(3):503–518. doi: 10.1016/0005-2728(73)90072-8. [DOI] [PubMed] [Google Scholar]
  3. Bossard M. J., Vik T. A., Schuster S. M. Beef heart mitochondrial adenosine triphosphatase-catalyzed formation of a transition state analog in ATP synthesis. J Biol Chem. 1980 Jun 10;255(11):5342–5346. [PubMed] [Google Scholar]
  4. Chance B., Wilson D. F., Dutton P. L., Erecińska M. Energy-coupling mechanisms in mitochondria: kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1175–1182. doi: 10.1073/pnas.66.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang T. M., Penefsky H. S. Energy-dependent enhancement of aurovertin fluorescence. An indicator of conformational changes in beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1974 Feb 25;249(4):1090–1098. [PubMed] [Google Scholar]
  6. Chang T., Penefsky H. S. Aurovertin, a fluorescent probe of conformational change in beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1973 Apr 25;248(8):2746–2754. [PubMed] [Google Scholar]
  7. Choate G. L., Hutton R. L., Boyer P. D. Occurrence and significance of oxygen exchange reactions catalyzed by mitochondrial adenosine triphosphatase preparations. J Biol Chem. 1979 Jan 25;254(2):286–290. [PubMed] [Google Scholar]
  8. Davis K. A., Hatefi Y., Poff K. L., Butler W. L. The b-type cytochromes of bovine heart mitochondria: absorption spectra, enzymatic properties, and distribution in the electron transfer complexes. Biochim Biophys Acta. 1973 Dec 14;325(3):341–356. doi: 10.1016/0005-2728(73)90196-5. [DOI] [PubMed] [Google Scholar]
  9. Dooijewaard G., Slater E. C. Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. Biochim Biophys Acta. 1976 Jul 9;440(1):1–15. doi: 10.1016/0005-2728(76)90109-2. [DOI] [PubMed] [Google Scholar]
  10. Dooijewaard G., Slater E. C. Steady-state kinetics of low molecular weight (type-II) NADH dehydrogenase. Biochim Biophys Acta. 1976 Jul 9;440(1):16–35. doi: 10.1016/0005-2728(76)90110-9. [DOI] [PubMed] [Google Scholar]
  11. Erecińska M., Oshino R., Oshino N., Chance B. The b cytochromes in succinate--cytochrome c reductase from pigeon breast mitochondria. Arch Biochem Biophys. 1973 Aug;157(2):431–445. doi: 10.1016/0003-9861(73)90659-0. [DOI] [PubMed] [Google Scholar]
  12. Galante Y. M., Lee Y., Hatefi Y. Effect of pH on the mitochondrial energy-linked and non-energy-linked transhydrogenation reactions. J Biol Chem. 1980 Oct 25;255(20):9641–9646. [PubMed] [Google Scholar]
  13. Hatefi Y., Galante Y. M. Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. Proc Natl Acad Sci U S A. 1977 Mar;74(3):846–850. doi: 10.1073/pnas.74.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hatefi Y., Hanstein W. G. Destabilization of membranes with chaotropic ions. Methods Enzymol. 1974;31:770–790. doi: 10.1016/0076-6879(74)31080-4. [DOI] [PubMed] [Google Scholar]
  15. Hatefi Y., Phelps D. C., Galante Y. M. Energy-linked transhydrogenation from NADPH to [14C]NADP. J Biol Chem. 1980 Oct 25;255(20):9526–9529. [PubMed] [Google Scholar]
  16. Jencks W. P. The utilization of binding energy in coupled vectorial processes. Adv Enzymol Relat Areas Mol Biol. 1980;51:75–106. doi: 10.1002/9780470122969.ch2. [DOI] [PubMed] [Google Scholar]
  17. Kayalar C., Rosing J., Boyer P. D. 2,4-Dinitrophenol causes a marked increase in the apparent Km of Pi and of ADP for oxidative phosphorylation. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1153–1159. doi: 10.1016/s0006-291x(76)80252-5. [DOI] [PubMed] [Google Scholar]
  18. McCarty R. E., Fagan J. Light-stimulated incorporation of N-ethylmaleimide into coupling factor 1 in spinach chloroplasts. Biochemistry. 1973 Apr 10;12(8):1503–1507. doi: 10.1021/bi00732a006. [DOI] [PubMed] [Google Scholar]
  19. Ohnishi T. Thermodynamic and EPR characterization of iron-sulfur centers in the NADH-ubiquinone segment of the mitochondrial respiratory chain in pigeon heart. Biochim Biophys Acta. 1975 Jun 17;387(3):475–490. doi: 10.1016/0005-2728(75)90087-0. [DOI] [PubMed] [Google Scholar]
  20. Page M. G., West I. C. The kinetics of the beta-galactoside-proton symport of Escherichia coli. Biochem J. 1981 Jun 15;196(3):721–731. doi: 10.1042/bj1960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phelps D. C., Hatefi Y. Inhibition of the mitochondrial nicotinamide nucleotide transhydrogenase by dicyclohexylcarbodiimide and diethylpyrocarbonate. J Biol Chem. 1981 Aug 10;256(15):8217–8221. [PubMed] [Google Scholar]
  22. Rieske J. S., Baum H., Stoner C. D., Lipton S. H. On the antimycin-sensitive cleavage of complex 3 of the mitochondrial respiratory chain. J Biol Chem. 1967 Nov 10;242(21):4854–4866. [PubMed] [Google Scholar]
  23. Robertson D. E., Kaczorowski G. J., Garcia M. L., Kaback H. R. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry. 1980 Dec 9;19(25):5692–5702. doi: 10.1021/bi00566a005. [DOI] [PubMed] [Google Scholar]
  24. Rosen G., Gresser M., Vinkler C., Boyer P. D. Assessment of total catalytic sites and the nature of bound nucleotide participation in photophosphorylation. J Biol Chem. 1979 Nov 10;254(21):10654–10661. [PubMed] [Google Scholar]
  25. Rosing J., Kayalar C., Boyer P. D. Evidence for energy-dependent change in phosphate binding for mitochondrial oxidative phosphorylation based on measurements of medium and intermediate phosphate-water exchanges. J Biol Chem. 1977 Apr 25;252(8):2478–2485. [PubMed] [Google Scholar]
  26. Ryrie I. J., Jagendorf A. T. Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts. J Biol Chem. 1972 Jul 25;247(14):4453–4459. [PubMed] [Google Scholar]
  27. Smith D. J., Boyer P. D. Demonstration of a transitory tight binding of ATP and of committed P(i) and ADP during ATP synthesis by chloroplasts. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4314–4318. doi: 10.1073/pnas.73.12.4314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stiggall D. L., Galante Y. M., Hatefi Y. Preparation and properties of complex V. Methods Enzymol. 1979;55:308-15, 819-21. doi: 10.1016/0076-6879(79)55036-8. [DOI] [PubMed] [Google Scholar]
  29. Vinkler C. Opposite modulation by uncoupling and electron transport limitation of the Kmapp of ADP for photophosphorylation. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1095–1100. doi: 10.1016/0006-291x(81)90731-2. [DOI] [PubMed] [Google Scholar]
  30. Webb M. R., Grubmeyer C., Penefsky H. S., Trentham D. R. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase. J Biol Chem. 1980 Dec 25;255(24):11637–11639. [PubMed] [Google Scholar]
  31. Wilson D. F., Dutton P. L. Energy dependent changes in the oxidation-reduction potential of cytochrome b. Biochem Biophys Res Commun. 1970 Apr 8;39(1):59–64. doi: 10.1016/0006-291x(70)90757-6. [DOI] [PubMed] [Google Scholar]
  32. Wilson D. F., Dutton P. L. The oxidation-reduction potentials of cytochromes a and a3 in intact rat liver mitochondria. Arch Biochem Biophys. 1970 Feb;136(2):583–585. doi: 10.1016/0003-9861(70)90233-x. [DOI] [PubMed] [Google Scholar]
  33. van de Stadt R. J., van Dam K. The equilibrium between the mitochondrial ATPase (F1) and its natural inhibitor in submitochondrial particles. Biochim Biophys Acta. 1974 May 22;347(2):240–252. doi: 10.1016/0005-2728(74)90048-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES