Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):1786–1790. doi: 10.1073/pnas.79.6.1786

Abortive termination of bioBFCD RNA synthesized in vitro from the bioABFCD operon of Escherichia coli K-12.

S K Nath, A Guha
PMCID: PMC346065  PMID: 6177001

Abstract

The nature of divergent transcription from the bioABFCD gene cluster of Escherichia coli K-12 has been studied in vitro by using DNA restriction fragments as templates. The in vitro RNA transcript initiated at the promoter pa was found to be similar to the in vivo bioA transcript, whereas the transcription initiated at pB produced a small piece of RNA less than 200 nucleotides long. Substituting ITP for GTP or using an S100 cell-free extract as a source of antiterminator permitted transcription of the bioBFCD gene cluster initiating at the promoter pB to be read through. The possible site for in vitro transcription termination in the bioB region is discussed.

Full text

PDF
1786

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhya S., Gottesman M. Control of transcription termination. Annu Rev Biochem. 1978;47:967–996. doi: 10.1146/annurev.bi.47.070178.004535. [DOI] [PubMed] [Google Scholar]
  2. Adhya S., Sarkar P., Valenzuela D., Maitra U. Termination of transcription by Escherichia coli RNA polymerase: influence of secondary structure of RNA transcripts on rho-independent and rho-dependent termination. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1613–1617. doi: 10.1073/pnas.76.4.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey J. M., Davidson N. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem. 1976 Jan;70(1):75–85. doi: 10.1016/s0003-2697(76)80049-8. [DOI] [PubMed] [Google Scholar]
  4. Cleary P. P., Campbell A., Chang R. Location of promoter and operator sites in the biotin gene cluster of Escherichia coli. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2219–2223. doi: 10.1073/pnas.69.8.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Das Gupta C. K., Vrancic A., Guha A. Isolation and characterization of the biotin genes of Escherichia coli K-12. Gene. 1977 Jul;1(5-6):331–345. doi: 10.1016/0378-1119(77)90038-5. [DOI] [PubMed] [Google Scholar]
  6. DasGupta C. K., Guha A. Isolation of the regulatory segment of the biotin operons of Escherichia coli K-12. Gene. 1978 May;3(3):233–246. doi: 10.1016/0378-1119(78)90034-3. [DOI] [PubMed] [Google Scholar]
  7. Fairbanks G., Jr, Levinthal C., Reeder R. H. Analysis of C14-labeled proteins by disc electrophoresis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):393–399. doi: 10.1016/0006-291x(65)90589-9. [DOI] [PubMed] [Google Scholar]
  8. Guha A. Divergent orientation of transcription from the biotin locus of Escherichia coli. J Mol Biol. 1971 Feb 28;56(1):53–62. doi: 10.1016/0022-2836(71)90083-0. [DOI] [PubMed] [Google Scholar]
  9. Ishii S., Salstrom J. S., Sugino Y., Szybalski W., Imamoto F. A biochemical assay for the transcription-antitermination function of the coliphage lambda N gene product. Gene. 1980 Jun;10(1):17–25. doi: 10.1016/0378-1119(80)90139-0. [DOI] [PubMed] [Google Scholar]
  10. Ketner G., Campbel A. Operator and promoter mutations affecting divergent transcription in the bio gene cluster of Escherichia coli. J Mol Biol. 1975 Jul 25;96(1):13–27. doi: 10.1016/0022-2836(75)90179-5. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lee F., Yanofsky C. Transcription termination at the trp operon attenuators of Escherichia coli and Salmonella typhimurium: RNA secondary structure and regulation of termination. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365–4369. doi: 10.1073/pnas.74.10.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maniatis T., Efstratiadis A. Fractionation of low molecular weight DNA or RNA in polyacrylamide gels containing 98% formamide or 7 M urea. Methods Enzymol. 1980;65(1):299–305. doi: 10.1016/s0076-6879(80)65040-x. [DOI] [PubMed] [Google Scholar]
  14. Miller J. S., Burgess R. R. Selectivity of RNA chain initiation in vitro. 1. Analysis of RNA initiations by two-dimensional thin-layer chromatography of 5'-triphosphate-labeled oligonucleotides. Biochemistry. 1978 May 30;17(11):2054–2059. doi: 10.1021/bi00604a005. [DOI] [PubMed] [Google Scholar]
  15. Otsuka A., Abelson J. The regulatory region of the biotin operon in Escherichia coli. Nature. 1978 Dec 14;276(5689):689–694. doi: 10.1038/276689a0. [DOI] [PubMed] [Google Scholar]
  16. Prakash O., Eisenberg M. A. In vitro synthesis and and regulation of the biotin enzymes of Escherichia coli K-12. J Bacteriol. 1978 Jun;134(3):1002–1012. doi: 10.1128/jb.134.3.1002-1012.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Szybalski E. H., Szybalski W. A comprehensive molecular map of bacteriophage lambda. Gene. 1979 Nov;7(3-4):217–270. doi: 10.1016/0378-1119(79)90047-7. [DOI] [PubMed] [Google Scholar]
  18. Vrancic A., Guha A. Evidence of two operators in the biotin locus of Escherichia coli. Nat New Biol. 1973 Sep 26;245(143):106–108. doi: 10.1038/newbio245106a0. [DOI] [PubMed] [Google Scholar]
  19. Zubay G. In vitro synthesis of protein in microbial systems. Annu Rev Genet. 1973;7:267–287. doi: 10.1146/annurev.ge.07.120173.001411. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES