Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):1964–1968. doi: 10.1073/pnas.79.6.1964

DNA transfer of focus- and tumor-forming ability into nontumorigenic CHEF cells.

B L Smith, A Anisowicz, L A Chodosh, R Sager
PMCID: PMC346102  PMID: 6952247

Abstract

CHEF/18 fibroblastic cells derived from a Chinese hamster embryo are diploid and nontumorigenic and require multiple steps of chemical treatment and selection to produce tumorigenic derivatives. In this report, CHEF/18 cells and a mutant capable of growing in medium with a low concentration of serum, LS1-1, were recipients in DNA transfer experiments using the calcium phosphate coprecipitation method. Focus formation with donor DNAs from tumor-derived CHEF cells and from human bladder carcinoma cell line EJ gave yields of 0.02-0.59 focus per microgram of DNA per 10(6) recipients. In one experiment in which CHEF/18 cells were transfected with EJ DNA, the presence of human DNA was detected in five of seven foci by using a cloned Alu sequence. Cells from one of these foci gave rise to tumors in nude mice, and the DNA produced secondary CHEF/18 transfectants. Because normal human cells as well as CHEF/18 cells require multiple stages to become tumorigenic, these findings suggest that EJ cells contain tumor-inducing DNA as the result of prior changes that occurred during the development of this carcinoma.

Full text

PDF
1964

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cooper G. M., Okenquist S., Silverman L. Transforming activity of DNA of chemically transformed and normal cells. Nature. 1980 Apr 3;284(5755):418–421. doi: 10.1038/284418a0. [DOI] [PubMed] [Google Scholar]
  2. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  3. Graham F. L., van der Eb A. J. Transformation of rat cells by DNA of human adenovirus 5. Virology. 1973 Aug;54(2):536–539. doi: 10.1016/0042-6822(73)90163-3. [DOI] [PubMed] [Google Scholar]
  4. Houck C. M., Rinehart F. P., Schmid C. W. A ubiquitous family of repeated DNA sequences in the human genome. J Mol Biol. 1979 Aug 15;132(3):289–306. doi: 10.1016/0022-2836(79)90261-4. [DOI] [PubMed] [Google Scholar]
  5. Kakunaga T. A quantitative system for assay of malignant transformation by chemical carcinogens using a clone derived from BALB-3T3. Int J Cancer. 1973 Sep 15;12(2):463–473. doi: 10.1002/ijc.2910120217. [DOI] [PubMed] [Google Scholar]
  6. Kato T., Irwin R. J., Jr, Prout G. R., Jr Cell cycles in two cell lines of human bladder carcinoma. Tohoku J Exp Med. 1977 Feb;121(2):157–164. doi: 10.1620/tjem.121.157. [DOI] [PubMed] [Google Scholar]
  7. Kitchin R. M., Sager R. Genetic analysis of tumorigenesis: V. Chromosomal analysis of tumorigenic and nontumorigenic diploid chinese hamster cell lines. Somatic Cell Genet. 1980 Jan;6(1):75–87. doi: 10.1007/BF01538697. [DOI] [PubMed] [Google Scholar]
  8. Kitchin R. M., Sager R. Genetic analysis of tumorigenesis: VI. Chromosome rearrangements in tumors derived from diploid premalignant Chinese hamster cells in nude mice. Somatic Cell Genet. 1980 Sep;6(5):615–630. doi: 10.1007/BF01538641. [DOI] [PubMed] [Google Scholar]
  9. Klein G. The role of gene dosage and genetic transpositions in carcinogenesis. Nature. 1981 Nov 26;294(5839):313–318. doi: 10.1038/294313a0. [DOI] [PubMed] [Google Scholar]
  10. Krontiris T. G., Cooper G. M. Transforming activity of human tumor DNAs. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1181–1184. doi: 10.1073/pnas.78.2.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lane M. A., Sainten A., Cooper G. M. Activation of related transforming genes in mouse and human mammary carcinomas. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5185–5189. doi: 10.1073/pnas.78.8.5185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mark J. Chromosomal abnormalities and their specificity in human neoplasms: an assessment of recent observations by banding techniques. Adv Cancer Res. 1977;24:165–222. doi: 10.1016/s0065-230x(08)61015-5. [DOI] [PubMed] [Google Scholar]
  13. Murray M. J., Shilo B. Z., Shih C., Cowing D., Hsu H. W., Weinberg R. A. Three different human tumor cell lines contain different oncogenes. Cell. 1981 Aug;25(2):355–361. doi: 10.1016/0092-8674(81)90054-4. [DOI] [PubMed] [Google Scholar]
  14. Rubin C. M., Houck C. M., Deininger P. L., Friedmann T., Schmid C. W. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences. Nature. 1980 Mar 27;284(5754):372–374. doi: 10.1038/284372a0. [DOI] [PubMed] [Google Scholar]
  15. Sager R., Anisowicz A., Howell N. Genomic rearrangements and tumor-forming potential in an SV40-transformed mouse cell line and its hybrid and cybrid progeny. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):747–754. doi: 10.1101/sqb.1981.045.01.093. [DOI] [PubMed] [Google Scholar]
  16. Sager R., Anisowicz A., Howell N. Genomic rearrangements in a mouse cell line containing integrated SV40 DNA. Cell. 1981 Jan;23(1):41–50. doi: 10.1016/0092-8674(81)90268-3. [DOI] [PubMed] [Google Scholar]
  17. Sager R., Kovac P. E. Genetic analysis of tumorigenesis: I. Expression of tumor-forming ability in hamster hybrid cell lines. Somatic Cell Genet. 1978 May;4(3):375–392. doi: 10.1007/BF01542849. [DOI] [PubMed] [Google Scholar]
  18. Sager R., Kovac P. E. Genetic analysis of tumorigenesis: IV. Chromosome reduction and marker segregation in progeny clones from Chinese hamster cell hybrids. Somatic Cell Genet. 1979 Jul;5(4):491–502. doi: 10.1007/BF01538883. [DOI] [PubMed] [Google Scholar]
  19. Schneider E. L., Stanbridge E. J., Epstein C. J. Incorporation of 3H-uridine and 3H-uracil into RNA: a simple technique for the detection of mycoplasma contamination of cultured cells. Exp Cell Res. 1974 Mar 15;84(1):311–318. doi: 10.1016/0014-4827(74)90411-x. [DOI] [PubMed] [Google Scholar]
  20. Shih C., Padhy L. C., Murray M., Weinberg R. A. Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature. 1981 Mar 19;290(5803):261–264. doi: 10.1038/290261a0. [DOI] [PubMed] [Google Scholar]
  21. Shih C., Shilo B. Z., Goldfarb M. P., Dannenberg A., Weinberg R. A. Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5714–5718. doi: 10.1073/pnas.76.11.5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shilo B. Z., Weinberg R. A. Unique transforming gene in carcinogen-transformed mouse cells. Nature. 1981 Feb 12;289(5798):607–609. doi: 10.1038/289607a0. [DOI] [PubMed] [Google Scholar]
  23. Weinberg R. A. Use of transfection to analyze genetic information and malignant transformation. Biochim Biophys Acta. 1981 Aug 31;651(1):25–35. doi: 10.1016/0304-419x(81)90003-2. [DOI] [PubMed] [Google Scholar]
  24. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  25. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wigler M., Perucho M., Kurtz D., Dana S., Pellicer A., Axel R., Silverstein S. Transformation of mammalian cells with an amplifiable dominant-acting gene. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3567–3570. doi: 10.1073/pnas.77.6.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES