Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):2046–2050. doi: 10.1073/pnas.79.6.2046

Inhibition of amiloride-sensitive sodium conductance by indoleamines.

G J Legris, P C Will, U Hopfer
PMCID: PMC346119  PMID: 6281791

Abstract

To examine a possible role of indoleamines in the regulation of epithelial sodium absorption, the effect of serotonin (5-hydroxytryptamine) and several derivatives on electrolyte transport was measured in vitro in the baboon bronchus and in the trachea and colon of sodium-deficient rats. Serotonin, melatonin (N-acetyl-5-hydroxytryptamine), and harmaline (1-methyl-7-methoxy-3,4-dihydro-beta-carboline) inhibited sodium transport in all three preparations in a similar manner to the natriuretic agent amiloride. In all three epithelia, sodium absorption via the amiloride-sensitive pathway constitutes a substantial portion of total electrolyte transport, measured as the amiloride-sensitive short-circuit current. Thus 25 microM amiloride inhibited the short-circuit current 21% in the rat trachea, 63% in the baboon bronchus, and 90% in the rat colon. Serotonin, melatonin, and harmaline inhibited the amiloride-sensitive portion of the short-circuit current from the luminal side of the epithelium. The inhibition was rapid, requiring only seconds, and maximal inhibition by serotonin was identical to that by amiloride. When sodium was omitted from the luminal solution, the short-circuit current was reduced a similar amount, suggesting that sodium absorption was being inhibited by both amiloride and the indoles. The IC50 value for amiloride was 50 nM in the baboon bronchus and 500 nM in the rat colon. In contrast, the IC50 value for serotonin was 0.4 mM in the baboon bronchus and 8 mM in the rat colon. These results, together with the wide distribution of amine-precursor-uptake-and-decarboxylation (APUD) cells in the respiratory and intestinal tract, suggest that certain indoleamines could play a role as local regulators of fluid and electrolyte transport. For example, in the airways, indoleamines may be one of the factors involved in regulation of the depth of the periciliary fluid layer.

Full text

PDF
2046

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlman H., Bhargava H. N., Dahlström A., Larsson I., Newson B., Pettersson G. On the presence of serotonin in the gut lumen and possible release mechanisms. Acta Physiol Scand. 1981 Jul;112(3):263–269. doi: 10.1111/j.1748-1716.1981.tb06815.x. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F. J., Al-Awqati Q. Interaction between sodium and chloride transport in canine tracheal mucosa. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):111–119. doi: 10.1152/jappl.1979.46.1.111. [DOI] [PubMed] [Google Scholar]
  3. Asmundsson T., Kilburn K. H. Mucociliary clearance rates at various levels in dog lungs. Am Rev Respir Dis. 1970 Sep;102(3):388–397. doi: 10.1164/arrd.1970.102.3.388. [DOI] [PubMed] [Google Scholar]
  4. Breeze R. G., Wheeldon E. B. The cells of the pulmonary airways. Am Rev Respir Dis. 1977 Oct;116(4):705–777. doi: 10.1164/arrd.1977.116.4.705. [DOI] [PubMed] [Google Scholar]
  5. Bubenik G. A. Localization of melatonin in the digestive tract of the rat. Effect of maturation, diurnal variation, melatonin treatment and pinealectomy. Horm Res. 1980;12(6):313–323. doi: 10.1159/000179137. [DOI] [PubMed] [Google Scholar]
  6. Cuthbert A. W., Shum W. K. Induction of transporting sites in a sodium transporting epithelium. J Physiol. 1976 Aug;260(1):223–235. doi: 10.1113/jphysiol.1976.sp011512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donowitz M., Asarkof N., Pike G. Calcium dependence of serotonin-induced changes in rabbit ileal electrolyte transport. J Clin Invest. 1980 Aug;66(2):341–352. doi: 10.1172/JCI109862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donowitz M., Charney A. N., Heffernan J. M. Effect of serotonin treatment on intestinal transport in the rabbit. Am J Physiol. 1977 Jan;232(1):E85–E94. doi: 10.1152/ajpendo.1977.232.1.E85. [DOI] [PubMed] [Google Scholar]
  9. Fain J. N., Berridge M. J. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J. 1979 Jan 15;178(1):45–58. doi: 10.1042/bj1780045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frizzell R. A., Schultz S. G. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol. 1972 Mar;59(3):318–346. doi: 10.1085/jgp.59.3.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frizzell R. A., Turnheim K. Ion transport by rabbit colon: II. Unidirectional sodium influx and the effects of amphotericin B and amiloride. J Membr Biol. 1978 May 3;40(3):193–211. doi: 10.1007/BF02002968. [DOI] [PubMed] [Google Scholar]
  12. Frizzell R. A., Welsh M. J., Smith P. L. Hormonal control of chloride secretion by canine tracheal epithelium: an electrophysiologic analysis. Ann N Y Acad Sci. 1981;372:558–570. doi: 10.1111/j.1749-6632.1981.tb15506.x. [DOI] [PubMed] [Google Scholar]
  13. Fromm M., Hegel U. Segmental heterogeneity of epithelial transport in rat large intestine. Pflugers Arch. 1978 Dec 15;378(1):71–83. doi: 10.1007/BF00581960. [DOI] [PubMed] [Google Scholar]
  14. Gavalov S. M., Snegurova V. G., Shebanova S. N., Amosova L. F. Serotonin krovi, bronkhial'nogo sekreta i sliuny pri khronicheskikh bronkho-legochnykh zabolevaniiakh u detei. Vopr Okhr Materin Det. 1975 Dec;20(12):46–49. [PubMed] [Google Scholar]
  15. HARTROFT P. M., EISENSTEIN A. B. Alterations in the adrenal cortex of the rat induced by sodium deficiency: correlation of histologic changes with steroid hormone secretion. Endocrinology. 1957 May;60(5):641–651. doi: 10.1210/endo-60-5-641. [DOI] [PubMed] [Google Scholar]
  16. Hage E. Endocrine cells in the bronchial mucosa of human foetuses. Acta Pathol Microbiol Scand A. 1972;80(2):225–234. doi: 10.1111/j.1699-0463.1972.tb02169.x. [DOI] [PubMed] [Google Scholar]
  17. Holloway W. R., Grota L. J., Brown G. M. Determination of immunoreactive melatonin in the colon of the rat by immunocytochemistry. J Histochem Cytochem. 1980 Mar;28(3):255–262. doi: 10.1177/28.3.6444434. [DOI] [PubMed] [Google Scholar]
  18. Kilburn K. H. A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis. 1968 Sep;98(3):449–463. doi: 10.1164/arrd.1968.98.3.449. [DOI] [PubMed] [Google Scholar]
  19. Knowles M., Gatzy J., Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981 Dec 17;305(25):1489–1495. doi: 10.1056/NEJM198112173052502. [DOI] [PubMed] [Google Scholar]
  20. Lauweryns J. M., Peuskens J. C. Argyrophil (kinin and amine producing?) cells in human infant airway epithelium. Life Sci. 1969 Jun 1;8(11):577–585. doi: 10.1016/0024-3205(69)90019-8. [DOI] [PubMed] [Google Scholar]
  21. Li J. H., de Sousa R. C. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin. J Membr Biol. 1979 Apr 20;46(2):155–169. doi: 10.1007/BF01961378. [DOI] [PubMed] [Google Scholar]
  22. Lindemann B., Van Driessche W. Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science. 1977 Jan 21;195(4275):292–294. doi: 10.1126/science.299785. [DOI] [PubMed] [Google Scholar]
  23. Lyngdorf-Henriksen P., Munck B. G., Skadhauge E. Sodium chloride transport across the lower intestine of the chicken. Dependence on sodium chloride concentration and effect of inhibitors. Pflugers Arch. 1978 Dec 28;378(2):161–165. doi: 10.1007/BF00584450. [DOI] [PubMed] [Google Scholar]
  24. Pearse A. G. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969 May;17(5):303–313. doi: 10.1177/17.5.303. [DOI] [PubMed] [Google Scholar]
  25. Rask-Madsen J., Hjelt K. Effect of amiloride on electrical activity and electrolyte transport in human colon. Scand J Gastroenterol. 1977;12(1):1–6. [PubMed] [Google Scholar]
  26. Rothe C. F., Quay J. F., Armstrong W. M. Measurement of epithelial electrical characteristics with an automatic voltage clamp device with compensation for solution resistance. IEEE Trans Biomed Eng. 1969 Apr;16(2):160–164. doi: 10.1109/tbme.1969.4502631. [DOI] [PubMed] [Google Scholar]
  27. Schneyer L. H. Amiloride inhibition of ion transport in perfused excretory duct of rat submaxillary gland. Am J Physiol. 1970 Oct;219(4):1050–1055. doi: 10.1152/ajplegacy.1970.219.4.1050. [DOI] [PubMed] [Google Scholar]
  28. Stoner L. C., Burg M. B., Orloff J. Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol. 1974 Aug;227(2):453–459. doi: 10.1152/ajplegacy.1974.227.2.453. [DOI] [PubMed] [Google Scholar]
  29. Sudou K., Hoshi T. Mode of action of amiloride in toad urinary bladder. An electrophysiological study of the drug action on sodium permeability of the mucosal border. J Membr Biol. 1977 Apr 7;32(1-2):115–132. doi: 10.1007/BF01905212. [DOI] [PubMed] [Google Scholar]
  30. Thompson S. M., Dawson D. C. Sodium uptake across the apical border of the isolated turtle colon: confirmation of the two-barrier model. J Membr Biol. 1978 Sep 25;42(4):357–374. doi: 10.1007/BF01870356. [DOI] [PubMed] [Google Scholar]
  31. Widdicombe J. H., Basbaum C. B., Yee J. Y. Localization of Na pumps in the tracheal epithelium of the dog. J Cell Biol. 1979 Aug;82(2):380–390. doi: 10.1083/jcb.82.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Widdicombe J. H., Welsh M. J. Ion transport by dog tracheal epithelium. Fed Proc. 1980 Nov;39(13):3062–3066. [PubMed] [Google Scholar]
  33. Will P. C., DeLisle R. C., Cortright R. N., Hopfer U. Induction of amiloride-sensitive sodium transport in the intestines by adrenal steroids. Ann N Y Acad Sci. 1981;372:64–78. doi: 10.1111/j.1749-6632.1981.tb15458.x. [DOI] [PubMed] [Google Scholar]
  34. Will P. C., Lebowitz J. L., Hopfer U. Induction of amiloride-sensitive sodium transport in the rat colon by mineralocorticoids. Am J Physiol. 1980 Apr;238(4):F261–F268. doi: 10.1152/ajprenal.1980.238.4.F261. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES