Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Mar;79(6):2086–2090. doi: 10.1073/pnas.79.6.2086

Corticotropin and β-endorphin-like materials are native to unicellular organisms

D LeRoith *, A S Liotta , J Roth *, J Shiloach , M E Lewis §, C B Pert §, D T Krieger †,
PMCID: PMC346128  PMID: 16593172

Abstract

Multiple molecular forms of immunoreactive corticotropin (ACTH) and β-endorphin were present in extracts of a unicellular eukaryote (Tetrahymena pyriformis). One form of immunoreactive ACTH reacted similarly with two different ACTH antisera (one specific for the 11-24 sequence and the other with determinants within sequences 1-14 and 17-39) and migrated with synthetic hACTH-(1-39) in a gel filtration system. This form also exhibited ACTH bioactivity in a dispersed rat adrenal cell bioassay system, with a mean immunoassay/bioassay ratio of 1.5. Gel filtration revealed multiple size classes of immunoreactive β-endorphin; a major peak of radioreceptor activity was detected which exhibited a Kav similar to that of authentic β-endorphin. A major portion of immunoreactive β-endorphin-sized material exhibited retention times similar to those of synthetic human and camel β-endorphin upon reverse-phase high-pressure liquid chromatography. These distinctive properties and specificities would seem to exclude the presence of limited homologies with sequences present in other proteins. High molecular weight material containing both ACTH and β-endorphin antigenic determinants was also demonstrated, suggesting, but not proving, the presence of a common precursor molecule.

Keywords: Tetrahymena pyriformis, high-pressure liquid chromatography, gel filtration, radioreceptor assay, bioassay

Full text

PDF
2086

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gros C., Pradelles P., Rouget C., Bepoldin O., Dray F., Fournie-Zaluski M. C., Roques B. P., Pollard H., Llorens-Cortes C., Schwartz J. C. Radioimmunoassay of methionine- and leucine-enkephalins in regions of rat brain and comparison with endorphins estimated by a radioreceptor assay. J Neurochem. 1978 Jul;31(1):29–39. doi: 10.1111/j.1471-4159.1978.tb12429.x. [DOI] [PubMed] [Google Scholar]
  2. Hökfelt T., Johansson O., Ljungdahl A., Lundberg J. M., Schultzberg M. Peptidergic neurones. Nature. 1980 Apr 10;284(5756):515–521. doi: 10.1038/284515a0. [DOI] [PubMed] [Google Scholar]
  3. Josefsson J. O., Johansson P. Naloxone-reversible effect of opioids on pinocytosis in Amoeba proteus. Nature. 1979 Nov 1;282(5734):78–80. doi: 10.1038/282078a0. [DOI] [PubMed] [Google Scholar]
  4. Julliard J. H., Shibasaki T., Ling N., Guillemin R. High-molecular-weight immunoreactive beta-endorphin in extracts of human placenta is a fragment of immunoglobulin G. Science. 1980 Apr 11;208(4440):183–185. doi: 10.1126/science.6244620. [DOI] [PubMed] [Google Scholar]
  5. Krieger D. T., Liotta A. S. Pituitary hormones in brain: where, how, and why? Science. 1979 Jul 27;205(4404):366–372. doi: 10.1126/science.221983. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Le Roith D., Shiloach J., Roth J., Lesniak M. A. Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6184–6188. doi: 10.1073/pnas.77.10.6184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LeRoith D., Shiloach J., Roth J., Lesniak M. A. Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem. 1981 Jul 10;256(13):6533–6536. [PubMed] [Google Scholar]
  9. Lewis M. E., Mishkin M., Bragin E., Brown R. M., Pert C. B., Pert A. Opiate receptor gradients in monkey cerebral cortex: correspondence with sensory processing hierarchies. Science. 1981 Mar 13;211(4487):1166–1169. doi: 10.1126/science.6258227. [DOI] [PubMed] [Google Scholar]
  10. Liotta A. S., Gildersleeve D., Brownstein M. J., Krieger D. T. Biosynthesis in vitro of immunoreactive 31,000-dalton corticotropin/beta-endorphin-like material by bovine hypothalamus. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1448–1452. doi: 10.1073/pnas.76.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liotta A. S., Krieger D. T. An improved bioassay for ACTH determination. Endocr Res Commun. 1977;4(2):159–169. doi: 10.3109/07435807709073920. [DOI] [PubMed] [Google Scholar]
  12. Liotta A. S., Krieger D. T. In vitro biosynthesis and comparative posttranslational processing of immunoreactive precursor corticotropin/beta-endorphin by human placental and pituitary cells. Endocrinology. 1980 May;106(5):1504–1511. doi: 10.1210/endo-106-5-1504. [DOI] [PubMed] [Google Scholar]
  13. Liotta A. S., Krieger D. T. Preliminary characterization of in vitro synthesized hypothalamic precursor ACTH/beta-endorphin-like material. Mol Cell Endocrinol. 1979 Dec;16(3):221–228. doi: 10.1016/0303-7207(79)90028-5. [DOI] [PubMed] [Google Scholar]
  14. Liotta A. S., Li C. H., Schussler G. C., Krieger D. T. Comparative metabolic clearance rate, volume of distribution and plasma half-life of human beta-lipotropin and ACTH. Life Sci. 1978 Dec 4;23(23):2323–2330. doi: 10.1016/0024-3205(78)90198-4. [DOI] [PubMed] [Google Scholar]
  15. Liotta A. S., Loudes C., McKelvy J. F., Krieger D. T. Biosynthesis of precursor corticotropin/endorphin-, corticotropin-, alpha-melanotropin-, beta-lipotropin-, and beta-endorphin-like material by cultured neonatal rat hypothalamic neurons. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1880–1884. doi: 10.1073/pnas.77.4.1880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liotta A. S., Suda T., Krieger D. T. beta-Lipotropin is the major opioid-like peptide of human pituitary and rat pars distalis: lack of significant beta-endorphin. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2950–2954. doi: 10.1073/pnas.75.6.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liotta A. S., Yamaguchi H., Krieger D. T. Biosynthesis and release of beta-endorphin-, N-acetyl beta-endorphin-, beta-endorphin-(1-27)-, and N-acetyl beta-endorphin-(1-27)-like peptides by rat pituitary neurointermediate lobe: beta-endorphin is not further processed by anterior lobe. J Neurosci. 1981 Jun;1(6):585–595. doi: 10.1523/JNEUROSCI.01-06-00585.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liotta A., Krieger D. T. A sensitive bioassay for the determination of human plasma ACTH levels. J Clin Endocrinol Metab. 1975 Feb;40(2):268–267. doi: 10.1210/jcem-40-2-268. [DOI] [PubMed] [Google Scholar]
  19. Maruo T., Cohen H., Segal S. J., Koide S. S. Production of choriogonadotropin-like factor by a microorganism. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6622–6626. doi: 10.1073/pnas.76.12.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schwyzer R. ACTH: a short introductory review. Ann N Y Acad Sci. 1977 Oct 28;297:3–26. doi: 10.1111/j.1749-6632.1977.tb41843.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES