Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Apr;79(7):2315–2318. doi: 10.1073/pnas.79.7.2315

Involvement of multiple sodium ions in intestinal d-glucose transport.

J D Kaunitz, R Gunther, E M Wright
PMCID: PMC346183  PMID: 6954543

Abstract

Brush border membrane vesicles isolated from rabbit small intestine were used to measure the interactions between sodium and glucose transport with a rapid uptake technique. A plot of glucose uptake rate vs. increasing sodium concentration yielded a sigmoid curve. Hill analysis revealed a coefficient of 1.9 +/- 0.02 (+/- SEM), consistent with at least two sodium ions involved in glucose transport. Transport coupling was then measured directly with double-label experiments in which the uptakes of D-glucose and sodium were determined in the presence and absence of cotransported solute. At the earliest time point, the ratio of cosubstrate-dependent sodium transport to glucose transport was 3.2 +2- 0.7 (+/- SEM). We conclude that two or more sodium ions are coupled to glucose transport across the intestinal brush border membranes.

Full text

PDF
2315

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  2. BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
  4. Crane R. K., Dorando F. C. On the mechanism of Na+-dependent glucose transport. Ann N Y Acad Sci. 1980;339:46–52. doi: 10.1111/j.1749-6632.1980.tb15967.x. [DOI] [PubMed] [Google Scholar]
  5. Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
  6. Goldner A. M., Schultz S. G., Curran P. F. Sodium and sugar fluxes across the mucosal border of rabbit ileum. J Gen Physiol. 1969 Mar;53(3):362–383. doi: 10.1085/jgp.53.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hilden S. A., Sacktor B. D-Glucose-dependent sodium transport in renal brush border membrane vesicles. J Biol Chem. 1979 Aug 10;254(15):7090–7096. [PubMed] [Google Scholar]
  8. Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
  9. Hopfer U. Isolated membrane vesicles as tools for analysis of epithelial transport. Am J Physiol. 1977 Dec;233(6):E445–E449. doi: 10.1152/ajpendo.1977.233.6.E445. [DOI] [PubMed] [Google Scholar]
  10. Hopfer U. Kinetics of Na+-dependent D-glucose transport. J Supramol Struct. 1977;7(1):1–13. doi: 10.1002/jss.400070102. [DOI] [PubMed] [Google Scholar]
  11. Kessler M., Tannenbaum V., Tannenbaum C. A simple apparatus for performing short-time (1--2 seconds) uptake measurements in small volumes; its application to D-glucose transport studies in brush border vesicles from rabbit jejunum and ileum. Biochim Biophys Acta. 1978 May 18;509(2):348–359. doi: 10.1016/0005-2736(78)90053-6. [DOI] [PubMed] [Google Scholar]
  12. Kimmich G. A., Randles J. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim Biophys Acta. 1980 Mar 13;596(3):439–444. doi: 10.1016/0005-2736(80)90131-5. [DOI] [PubMed] [Google Scholar]
  13. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  14. Love R. D., Uglem G. L. Estimation of the coupling coefficient for glucose and sodium transport in Hymenolepis diminuta. J Parasitol. 1978 Jun;64(3):426–430. [PubMed] [Google Scholar]
  15. Murer H., Hopfer U. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc Natl Acad Sci U S A. 1974 Feb;71(2):484–488. doi: 10.1073/pnas.71.2.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
  17. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]
  18. Turner R. J., Silverman M. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: stoichiometry and order of binding. J Membr Biol. 1981 Jan 30;58(1):43–55. doi: 10.1007/BF01871033. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES