Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Apr;79(7):2338–2341. doi: 10.1073/pnas.79.7.2338

The 48-base-long primordial building block of immunoglobulin light-chain variable regions is complementary to the primordial building block of heavy-chain variable regions.

S Ohno, T Matsunaga
PMCID: PMC346188  PMID: 6808518

Abstract

The ancestral gene for immunoglobulin light-chain variable regions (Ig VLs) of the kappa as well as the lambda class apparently arose from about 12 tandem repeats of the 48-base-long primordial building block sequence TCT-TGC-GCA-GTA-AGT-CCA-CTC-CAG-GTC-ATA-TCC-AGT-CAG-GCT-GCT-GAA. Even today, amino acid residues 67 to 82 of each Ig V kappa L are still specified by a direct descendant in toto of the above-noted primordial building block, whereas amino acid residues 14 to 25 are invariably specified by its truncated copy. The Ig VL primordial building block presently identified is 100% complementary to the Ig VH (heavy-chain variable region) primordial building block previously identified. In the recognition of specific antigenic determinants by antibodies, Ig VL and Ig VH of light-chain--heavy-chain dimers have to complement each other. It is perhaps fitting that the primordial building blocks of the two are represented by the complementary strands of the same 48-base-pair-long DNA sequence.

Full text

PDF
2338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert E., Kano K., Abeyounis C. J., Milgrom F. Detection of human lymphocyte isoantigens by rabbit homotransplantation sera. Transplantation. 1969 Oct;8(4):466–471. doi: 10.1097/00007890-196910000-00018. [DOI] [PubMed] [Google Scholar]
  2. Altenburger W., Steinmetz M., Zachau H. G. Functional and non-functional joining in immunoglobulin light chain genes of a mouse myeloma. Nature. 1980 Oct 16;287(5783):603–607. doi: 10.1038/287603a0. [DOI] [PubMed] [Google Scholar]
  3. Arden B., Wakeland E. K., Klein J. Structural comparisons of serologically indistinguishable H-2K-encoded antigens from inbred and wild mice. J Immunol. 1980 Dec;125(6):2424–2428. [PubMed] [Google Scholar]
  4. Bentley D. L., Rabbitts T. H. Human immunoglobulin variable region genes--DNA sequences of two V kappa genes and a pseudogene. Nature. 1980 Dec 25;288(5792):730–733. doi: 10.1038/288730a0. [DOI] [PubMed] [Google Scholar]
  5. Bodmer W. F. New genetic model for allelism at histocompatibility and other complex loci: polymorphism for control of gene expression. Transplant Proc. 1973 Dec;5(4):1471–1475. [PubMed] [Google Scholar]
  6. Bothwell A. L., Paskind M., Reth M., Imanishi-Kari T., Rajewsky K., Baltimore D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell. 1981 Jun;24(3):625–637. doi: 10.1016/0092-8674(81)90089-1. [DOI] [PubMed] [Google Scholar]
  7. Cami B., Brégégère F., Abastado J. P., Kourilsky P. Multiple sequences related to classical histocompatibility antigens in the mouse genome. Nature. 1981 Jun 25;291(5817):673–675. doi: 10.1038/291673a0. [DOI] [PubMed] [Google Scholar]
  8. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  9. Iha T. H., Gerbrandt G., Bodmer W. F., McGary D., Stone W. H. Cross-reactions of cattle lymphocytotoxic sera with HL-A and other human antigens. Tissue Antigens. 1973;3(4):291–302. doi: 10.1111/j.1399-0039.1973.tb01006.x. [DOI] [PubMed] [Google Scholar]
  10. Ivăsková E., Dausset J., Iványi P. Cytotoxic reactions of anti-H-2 sera with human lymphocytes. Folia Biol (Praha) 1972;18(3):194–197. [PubMed] [Google Scholar]
  11. Klein J., Figueroa F. Polymorphism of the mouse H-2 loci. Immunol Rev. 1981;60:23–57. doi: 10.1111/j.1600-065x.1981.tb00361.x. [DOI] [PubMed] [Google Scholar]
  12. Kvist S., Bregegere F., Rask L., Cami B., Garoff H., Daniel F., Wiman K., Larhammar D., Abastado J. P., Gachelin G. cDNA clone coding for part of a mouse H-2d major histocompatibility antigen. Proc Natl Acad Sci U S A. 1981 May;78(5):2772–2776. doi: 10.1073/pnas.78.5.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohno S., Kato K., Hozumi T., Matsunaga T. Mouse immunoglobulin coding sequences for the heavy-chain variable region arose as repeats of the two short building blocks. Proc Natl Acad Sci U S A. 1982 Jan;79(1):132–136. doi: 10.1073/pnas.79.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohta T. Genetic variation in small multigene families. Genet Res. 1981 Apr;37(2):133–149. doi: 10.1017/s0016672300020115. [DOI] [PubMed] [Google Scholar]
  15. Ploegh H. L., Orr H. T., Strominger J. L. Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6081–6085. doi: 10.1073/pnas.77.10.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schäfer W. Der Mäuse-Inzuchstamm STU. Entwicklung und Eigenschaften. Z Naturforsch C. 1979 Mar-Apr;34(3-4):306–309. [PubMed] [Google Scholar]
  17. Seidman J. G., Leder P. A mutant immunoglobulin light chain is formed by aberrant DNA- and RNA-splicing events. Nature. 1980 Aug 21;286(5775):779–783. doi: 10.1038/286779a0. [DOI] [PubMed] [Google Scholar]
  18. Seidman J. G., Max E. E., Leder P. A kappa-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. Nature. 1979 Aug 2;280(5721):370–375. doi: 10.1038/280370a0. [DOI] [PubMed] [Google Scholar]
  19. Silver J., Hood L. Preliminary amino acid sequences of transplantation antigens: genetic and evolutionary implications. Contemp Top Mol Immunol. 1976;5:35–68. doi: 10.1007/978-1-4684-8142-6_2. [DOI] [PubMed] [Google Scholar]
  20. Steinmetz M., Frelinger J. G., Fisher D., Hunkapiller T., Pereira D., Weissman S. M., Uehara H., Nathenson S., Hood L. Three cDNA clones encoding mouse transplantation antigens: homology to immunoglobulin genes. Cell. 1981 Apr;24(1):125–134. doi: 10.1016/0092-8674(81)90508-0. [DOI] [PubMed] [Google Scholar]
  21. Uehara H., Ewenstein B. M., Martinko J. M., Nathenson S. G., Coligan J. E., Kindt T. J. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein. Biochemistry. 1980 Jan 22;19(2):306–315. doi: 10.1021/bi00543a009. [DOI] [PubMed] [Google Scholar]
  22. Vitetta E. S., Capra J. D. The protein products of the murine 17th chromosome: genetics and structure. Adv Immunol. 1978;26:147–193. doi: 10.1016/s0065-2776(08)60230-8. [DOI] [PubMed] [Google Scholar]
  23. Zaleska-Rutczynska Z., Klein J. Histocompatibility-2 system in wild mice. V. Serologic analysis of sixteen B10.W congenic lines. J Immunol. 1977 Dec;119(6):1903–1911. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES