Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 Apr;79(8):2673–2677. doi: 10.1073/pnas.79.8.2673

Mechanism of deoxyadenosine-induced catabolism of adenine ribonucleotides in adenosine deaminase-inhibited human T lymphoblastoid cells

Aldo S Bagnara 1,2,*, Michael S Hershfield 1,2,
PMCID: PMC346263  PMID: 6283540

Abstract

Loss of ATP accompanying accumulation of dATP has recently been reported to occur in the erythrocytes and lymphoblasts of patients with T lymphocytic leukemia during treatment with deoxycoformycin, an inhibitor of adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) that causes the accumulation of deoxyadenosine. We have studied the mechanisms responsible for adenine ribonucleotide depletion in cultured human CEM T lymphoblastoid cells treated with deoxycoformycin and deoxyadenosine. Accumulation of dATP was accompanied by depletion of total soluble adenine ribonucleotides without change in the adenylate energy charge, by the route ATP → AMP → IMP → inosine → hypoxanthine; conversion of IMP to AMP and de novo purine synthesis were inhibited in these cells. ATP degradation did not occur in a mutant of CEM that was incapable of phosphorylating deoxyadenosine, or in a B cell line with very limited ability to accumulate dATP. We found that dATP and ATP were both able to stimulate markedly the deamination of AMP by lymphoblast AMP deaminase; dAMP was a poor substrate for this enzyme (Km = 2.4 mM, vs. 0.4 mM for AMP). Similarly, dATP as well as ATP caused marked activation of IMP dephosphorylation by a lymphoblast cytoplasmic nucleotidase. Inhibition of intracellular AMP deaminase with coformycin prevented degradation of adenine ribonucleotides without affecting dATP accumulation. We propose that ATP-dependent phosphorylation of deoxyadenosine generates ADP and AMP. Simultaneously, dATP accumulation stimulates deamination of AMP, but not dAMP, and the dephosphorylation of IMP to inosine. Coupling of AMP degradation to ATP utilization in deoxyadenosine phosphorylation maintains the adenylate energy charge despite net depletion of cellular ATP.

Keywords: combined immunodeficiency disease, deoxycoformycin, lymphocytic leukemia, adenylate deaminase, 5′-nucleotidase

Full text

PDF
2673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal R. P., Parks R. E. Potent inhibition of muscle 5'-AMP deaminase by the nucleoside antibiotics coformycin and deoxycoformycin. Biochem Pharmacol. 1977 Apr 1;26(7):663–666. doi: 10.1016/0006-2952(77)90046-6. [DOI] [PubMed] [Google Scholar]
  2. Carson D. A., Kaye J., Matsumoto S., Seegmiller J. E., Thompson L. Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A. 1979 May;76(5):2430–2433. doi: 10.1073/pnas.76.5.2430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carson D. A., Kaye J., Seegmiller J. E. Differential sensitivity of human leukemic T cell lines and B cell lines to growth inhibition by deoxyadenosine. J Immunol. 1978 Nov;121(5):1726–1731. [PubMed] [Google Scholar]
  4. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Cohen A., Hirschhorn R., Horowitz S. D., Rubinstein A., Polmar S. H., Hong R., Martin D. W., Jr Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1978 Jan;75(1):472–476. doi: 10.1073/pnas.75.1.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coleman M. S., Donofrio J., Hutton J. J., Hahn L., Daoud A., Lampkin B., Dyminski J. Identification and quantitation of adenine deoxynucleotides in erythrocytes of a patient with adenosine deaminase deficiency and severe combined immunodeficiency. J Biol Chem. 1978 Mar 10;253(5):1619–1626. [PubMed] [Google Scholar]
  7. Crabtree G. W., Henderson J. F. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res. 1971 Jul;31(7):985–991. [PubMed] [Google Scholar]
  8. Donofrio J., Coleman M. S., Hutton J. J., Daoud A., Lampkin B., Dyminski J. Overproduction of adenine deoxynucleosides and deoxynucletides in adenosine deaminase deficiency with severe combined immunodeficiency disease. J Clin Invest. 1978 Oct;62(4):884–887. doi: 10.1172/JCI109201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frieden C., Kurz L. C., Gilbert H. R. Adenosine deaminase and adenylate deaminase: comparative kinetic studies with transition state and ground state analogue inhibitors. Biochemistry. 1980 Nov 11;19(23):5303–5309. doi: 10.1021/bi00564a024. [DOI] [PubMed] [Google Scholar]
  10. Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
  11. Grever M. R., Siaw M. F., Jacob W. F., Neidhart J. A., Miser J. S., Coleman M. S., Hutton J. J., Balcerzak S. P. The biochemical and clinical consequences of 2'-deoxycoformycin in refractory lymphoproliferative malignancy. Blood. 1981 Mar;57(3):406–417. [PubMed] [Google Scholar]
  12. Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem Pharmacol. 1977 Nov 1;26(21):1967–1972. doi: 10.1016/0006-2952(77)90003-x. [DOI] [PubMed] [Google Scholar]
  13. Hershfield M. S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine and adenine arabinoside. A basis for direct toxic effects of analogs of adenosine. J Biol Chem. 1979 Jan 10;254(1):22–25. [PubMed] [Google Scholar]
  14. Hershfield M. S., Kredich N. M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4292–4296. doi: 10.1073/pnas.77.7.4292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem. 1976 Dec 10;251(23):7348–7354. [PubMed] [Google Scholar]
  16. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine synthesis in human lymphoblasts. Similar rates of de novo synthesis during growth by normal cells and mutants deficient in hypoxanthine-guanine phosphoribosyltransferase activity. J Biol Chem. 1977 Sep 10;252(17):6002–6010. [PubMed] [Google Scholar]
  17. Hershfield M. S., Snyder F. F., Seegmiller J. E. Adenine and adenosine are toxic to human lymphoblast mutants defective in purine salvage enzymes. Science. 1977 Sep 23;197(4310):1284–1287. doi: 10.1126/science.197600. [DOI] [PubMed] [Google Scholar]
  18. KLENOW H. Further studies on the effect of deoxyadenosine on the accumulation of deoxyadenosine triphosphate and inhibition of deoxyribonucleic acid synthesis in Ehrlich ascites tumor cells in vitro. Biochim Biophys Acta. 1962 Dec 31;61:885–896. doi: 10.1016/0926-6550(62)90005-1. [DOI] [PubMed] [Google Scholar]
  19. Koller C. A., Mitchell B. S., Grever M. R., Mejias E., Malspeis L., Metz E. N. Treatment of acute lymphoblastic leukemia with 2'-deoxycoformycin: clinical and biochemical consequences of adenosine deaminase inhibition. Cancer Treat Rep. 1979 Nov-Dec;63(11-12):1949–1952. [PubMed] [Google Scholar]
  20. Kredich N. M., Hershfield M. S. S-adenosylhomocysteine toxicity in normal and adenosine kinase-deficient lymphoblasts of human origin. Proc Natl Acad Sci U S A. 1979 May;76(5):2450–2454. doi: 10.1073/pnas.76.5.2450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kredich N. M., Martin D. V., Jr Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell. 1977 Dec;12(4):931–938. doi: 10.1016/0092-8674(77)90157-x. [DOI] [PubMed] [Google Scholar]
  22. Lever J. E., Nuki G., Seegmiller J. E. Expression of purine overproduction in a series of 8-azaguanine-resistant diploid human lymphoblast lines. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2679–2683. doi: 10.1073/pnas.71.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lomax C. A., Bagnara A. S., Henderson J. F. Studies of the regulation of purine nucleotide catabolism. Can J Biochem. 1975 Feb;53(2):231–241. doi: 10.1139/o75-032. [DOI] [PubMed] [Google Scholar]
  24. Lomax C. A., Henderson J. F. Adenosine formation and metabolism during adenosine triphosphate catabolism in Ehrlich ascites tumor cells. Cancer Res. 1973 Nov;33(11):2825–2829. [PubMed] [Google Scholar]
  25. Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979 Sep 25;254(18):8956–8962. [PubMed] [Google Scholar]
  26. Mitchell B. S., Koller C. A., Heyn R. Inhibition of adenosine deaminase activity results in cytotoxicity to T lymphoblasts in vivo. Blood. 1980 Sep;56(3):556–559. [PubMed] [Google Scholar]
  27. Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore E. C., Hurlbert R. B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J Biol Chem. 1966 Oct 25;241(20):4802–4809. [PubMed] [Google Scholar]
  29. Munch-Petersen B., Tyrsted G., Dupont B. The deoxyribonucleoside 5'-triphosphate (dATP and dTTP) pool in phytohemagglutinin-stimulated and non-stimulated human lymphocytes. Exp Cell Res. 1973 Jun;79(2):249–256. doi: 10.1016/0014-4827(73)90442-4. [DOI] [PubMed] [Google Scholar]
  30. Pickering R. J., Pollara B., Meuwissen H. J. Workshop on severe combined immunological deficiency disease and adenosine deaminase deficiency. Albany, New York, on October 1, 1973. Clin Immunol Immunopathol. 1974 Nov;3(2):301–303. doi: 10.1016/0090-1229(74)90016-6. [DOI] [PubMed] [Google Scholar]
  31. REICHARD P., CANELLAKIS Z. N., CANELLAKIS E. S. Studies on a possible regulatory mechanism for the biosynthesis of deoxyribonucleic acid. J Biol Chem. 1961 Sep;236:2514–2519. [PubMed] [Google Scholar]
  32. Reynolds E. C., Harris A. W., Finch L. R. Deoxyribonucleoside triphosphate pools and differential thymidine sensitivities of cultured mouse lymphoma and myeloma cells. Biochim Biophys Acta. 1979 Jan 26;561(1):110–123. doi: 10.1016/0005-2787(79)90495-7. [DOI] [PubMed] [Google Scholar]
  33. Siaw M. F., Mitchell B. S., Koller C. A., Coleman M. S., Hutton J. J. ATP depletion as a consequence of adenosine deaminase inhibition in man. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6157–6161. doi: 10.1073/pnas.77.10.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smyth J. F., Paine R. M., Jackman A. L., Harrap K. R., Chassin M. M., Adamson R. H., Johns D. G. The clinical pharmacology of the adenosine deaminase inhibitor 2'-deoxycoformycin. Cancer Chemother Pharmacol. 1980;5(2):93–101. doi: 10.1007/BF00435411. [DOI] [PubMed] [Google Scholar]
  35. Van den Berghe G., Bontemps F., Hers H. G. Purine catabolism in isolated rat hepatocytes. Influence of coformycin. Biochem J. 1980 Jun 15;188(3):913–920. doi: 10.1042/bj1880913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Venner P. M., Glazer R. I. The metabolism of 2'-deoxycoformycin by L1210 cells in vitro. Biochem Pharmacol. 1979 Nov 1;28(21):3239–3242. doi: 10.1016/0006-2952(79)90070-4. [DOI] [PubMed] [Google Scholar]
  37. Yu A. L., Bakay B., Kung F. H., Nyhan W. L. Effects of 2'-deoxycoformycin on the metabolism of purines and the survival of malignant cells in a patient with T-cell leukemia. Cancer Res. 1981 Jul;41(7):2677–2682. [PubMed] [Google Scholar]
  38. Yun S., Suelter C. H. Human erythrocyte 5'-AMP aminohydrolase. Purification and characterization. J Biol Chem. 1978 Jan 25;253(2):404–408. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES