Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(9):2952–2956. doi: 10.1073/pnas.79.9.2952

Adult hemoglobins are synthesized in erythroid colonies in vitro derived from murine circulating hemopoietic progenitor cells during embryonic development.

P M Wong, B J Clarke, D H Carr, D H Chui
PMCID: PMC346326  PMID: 6953440

Abstract

Circulating peripheral blood cells and disaggregated yolk sac cells were obtained from normal mouse embryos as early as day 9 of gestation, prior to the formation of the fetal liver. These were cultured in vitro in plasma clots or methylcellulose, in the presence of either embryonic fluid or adult spleen cell-conditioned medium, with or without added erythropoietin. Large erythroid colonies were observed by the sixth day of culture. In all instances, these erythroid colonies synthesized adult hemoglobins. These results indicate that erythroid progenitor cells committed to adult hemoglobin synthesis are present in early embryonic circulation.

Full text

PDF
2952

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter B. P., Goff S. C. A murine model for the switch from fetal to adult hemoglobin during ontogeny. Blood. 1980 Dec;56(6):1100–1105. [PubMed] [Google Scholar]
  2. Aye M. T. Erythroid colony formation in cultures of human marrow: effect of leukocyte conditioned medium. J Cell Physiol. 1977 Apr;91(1):69–77. doi: 10.1002/jcp.1040910108. [DOI] [PubMed] [Google Scholar]
  3. Barker J. E. Development of the mouse hematopoietic system. I. Types of hemoglobin produced in embryonic yolk sac and liver. Dev Biol. 1968 Jul;18(1):14–29. doi: 10.1016/0012-1606(68)90020-1. [DOI] [PubMed] [Google Scholar]
  4. Beaupain D., Martin C., Dieterlen-Lièvre F. Are developmental hemoglobin changes related to the origin of stem cells and site of erythropoiesis? Blood. 1979 Feb;53(2):212–225. [PubMed] [Google Scholar]
  5. Brotherton T. W., Chui D. H., Gauldie J., Patterson M. Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2853–2857. doi: 10.1073/pnas.76.6.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brotherton T. W., Chui D. H., McFarland E. C., Russell E. S. Fetal erythropoiesis and hemoglobin ontogeny in tail-short (Ts/+) mutant mice. Blood. 1979 Sep;54(3):673–683. [PubMed] [Google Scholar]
  7. CRAIG M. L., RUSSELL E. S. A DEVELOPMENTAL CHANGE IN HEMOGLOBINS CORRELATED WITH AN EMBRYONIC RED CELL POPULATION IN THE MOUSE. Dev Biol. 1964 Oct;10:191–201. doi: 10.1016/0012-1606(64)90040-5. [DOI] [PubMed] [Google Scholar]
  8. Chui D. H., Liao S. K., Walker K. Fetal erythropoiesis in steel mutant mice. III. Defect in differentiation from BFU-E to CFU-E during early development. Blood. 1978 Mar;51(3):539–547. [PubMed] [Google Scholar]
  9. Chui D. H., Wong S. C., Enkin M. W., Patterson M., Ives R. A. Proportion of fetal hemoglobin synthesis decreases during erythroid cell maturation. Proc Natl Acad Sci U S A. 1980 May;77(5):2757–2761. doi: 10.1073/pnas.77.5.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clarke B. J., Nathan D. G., Alter B. P., Forget B. G., Hillman D. G., Housman D. Hemoglobin synthesis in human BFU-E and CFU-E-derived erythroid colonies. Blood. 1979 Oct;54(4):805–817. [PubMed] [Google Scholar]
  11. Fantoni A., Bank A., Marks P. A. Globin composition and synthesis of hemoglobins in developing fetal mice erythroid cells. Science. 1967 Sep 15;157(3794):1327–1329. doi: 10.1126/science.157.3794.1327. [DOI] [PubMed] [Google Scholar]
  12. Gilman J. G., Smithies O. Fetal hemoglobin variants in mice. Science. 1968 May 24;160(3830):885–886. doi: 10.1126/science.160.3830.885. [DOI] [PubMed] [Google Scholar]
  13. Gregory C. J., Eaves A. C. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood. 1978 Mar;51(3):527–537. [PubMed] [Google Scholar]
  14. Heath D. S., Axelrad A. A., McLeod D. L., Shreeve M. M. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 1976 May;47(5):777–792. [PubMed] [Google Scholar]
  15. Johnson G. R., Metcalf D. Pure and mixed erythroid colony formation in vitro stimulated by spleen conditioned medium with no detectable erythropoietin. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3879–3882. doi: 10.1073/pnas.74.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Messner H. A., Fauser A. A., Lepine J., Martin M. Properties of human pluripotent hemopoietic progenitors. Blood Cells. 1980;6(4):595–607. [PubMed] [Google Scholar]
  17. Nathan D. G., Chess L., Hillman D. G., Clarke B., Breard J., Merler E., Housman D. E. Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro. J Exp Med. 1978 Feb 1;147(2):324–339. doi: 10.1084/jem.147.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rifkind R. A., Chui D., Epler H. An ultrastructural study of early morphogenetic events during the establishment of fetal hepatic erythropoiesis. J Cell Biol. 1969 Feb;40(2):343–365. doi: 10.1083/jcb.40.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Russell E. S. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459. [PubMed] [Google Scholar]
  20. Whitney J. B., 3rd Differential control of the synthesis of two hemoglobin beta chains in normal mice. Cell. 1977 Dec;12(4):863–871. doi: 10.1016/0092-8674(77)90150-7. [DOI] [PubMed] [Google Scholar]
  21. Wiktor-Jedrzejczak W., Sharkie S., Ahmed A., Sell K. W., Santos G. W. Theta-sensitive cell and erythropoiesis: identification of a defect in W/Wv anemic mice. Science. 1977 Apr 15;196(4287):313–315. doi: 10.1126/science.322288. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES