Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 May;29(3):177–205. doi: 10.1023/A:1008008021481

Reactor design for large scale suspension animal cell culture

J Varley 1, J Birch 2
PMCID: PMC3463394  PMID: 19003342

Abstract

The scale of operation of freely suspended animal cell culture has been increasing and in order to meet the demand for recombinant therapeutic products, this increase is likely to continue. The most common reactor types used are stirred tanks. Air lift fermenters are also used, albeit less commonly. No specific guidelines have been published for large scale (≥10 000 L) animal cell culture and reactor designs are often based on those used for microbial systems. However, due to the large difference in energy inputs used for microbial and animal cell systems such designs may be far from optimal. In this review the importance of achieving a balance between mixing, mass transfer and shear effects is emphasised. The implications that meeting this balance has on design of vessels and operation, particularly in terms of strategies to ensure adequate mixing to achieve homogeneity in pH and dissolved gas concentrations are discussed.

Keywords: air lift fermenters, animal cell culture, scale up, stirred tanks

Full Text

The Full Text of this article is available as a PDF (295.4 KB).

References

  1. Ade Bello R, Robinson CW, Moo Young M. Liquid circulation and mixing characteristics of air lift contactors. Canadian Journal Chemical Engineering. 1984;62:573–577. [Google Scholar]
  2. Ade Bello R, Robinson CW, Moo Young M. Prediction of the volumetric mass transfer coefficients in pneumatic contactors. Chem Eng Sci. 1985;40(1):53–58. doi: 10.1016/0009-2509(85)85046-6. [DOI] [Google Scholar]
  3. Ade Bello R, Robinson CW, Moo Young M. Gas holdup and overall volumetric transfer coefficient in airlift contactors. Biotech Bioeng. 1985;27:369–381. doi: 10.1002/bit.260270323. [DOI] [PubMed] [Google Scholar]
  4. Adler I, Schugerl K. Cultivation of E-coli in single and ten-stage tower-loop reactors. Biotech Bioeng. 1983;25:417–436. doi: 10.1002/bit.260250210. [DOI] [PubMed] [Google Scholar]
  5. Al-Rubeai M, Singh MH, Goldman MH, Emery AN. Death mechanisms of animal cells in conditions of intensive agitation. Biotech Bioeng. 1995;45:463–472. doi: 10.1002/bit.260450602. [DOI] [PubMed] [Google Scholar]
  6. Asai T, Sano T, Itoh K. Scale up of fermentation. Biotech Forum Europe. 1992;9(9):556–550. [Google Scholar]
  7. Aunins JG, Woodson BA, Hale TK, Wang DIC. Effects of paddle impeller geometry on power input and mass transfer in small scale animal cell culture vessels. Biotech Bioeng. 1989;34:1127–1132. doi: 10.1002/bit.260340902. [DOI] [PubMed] [Google Scholar]
  8. Aunins JG, Henzler HJ. Aeration in cell culture bioreactors, Chapter 11. In: Stephanopoulos G, editor. Biotechnology V 3: Bioprocessing. Weinheim, Germany: VCH; 1993. pp. 219–281. [Google Scholar]
  9. Backer MP, Metzger LS, Slaber PL, Nevitt KL, Boder GB. Large scale production of monoclonal antibodies in suspension culture. Biotech Bioeng. 1988;32:993–1000. doi: 10.1002/bit.260320807. [DOI] [PubMed] [Google Scholar]
  10. Bajpai RK, Reuss M. Coupling of mixing and microbial kinetics for evaluating the performance of bioreactors. Canadian Journal Chemical Engineering. 1982;60:384–392. [Google Scholar]
  11. Bakker WAM, van Can HJL, Tramper J, de Goijer CD. Hydrodynamics and mixing in a multiple air lift loop reactor. Biotech Bioeng. 1993;42:994–1001. doi: 10.1002/bit.260420810. [DOI] [PubMed] [Google Scholar]
  12. Bakker WAM, den Hertog M, Tramper J, de Gooijer CD. Oxygen transfer in a multiple air-lift loop reactor. Bioprocess Engineering. 1995;12:167–172. [Google Scholar]
  13. Birch JR, Bonnerjea J, Flatman S, Vranch S. The production of monoclonal antibodies, Chapter 5. In: Birch JR, Lennox ES, editors. Monoclonal antibodies. New York, U.S.A.: Wiley-Liss; 1995. pp. 231–265. [Google Scholar]
  14. Birch JR, Thompson PW, Lambert K, Boraston R. The large scale cultivation of hybridoma cells producing monoclonal antibodies. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 1–16. [Google Scholar]
  15. Blenke H. Loop reactors. In: Ghose TK, Fiechter A, Blakebrough N, editors. Advances in Biochemical Engineering. New York, U.S.A.: Springer Verlag; 1979. pp. 121–214. [Google Scholar]
  16. Bliem R, Katinger H. Scale up engineering in animal cell technology: Part I. Trends in Biotechnology. 1988;6:190–195. doi: 10.1016/0167-7799(88)90045-5. [DOI] [Google Scholar]
  17. Bliem R, Katinger H. Scale up engineering in animal cell technology: Part II. Trends in Biotechnology. 1988;6:224–230. doi: 10.1016/0167-7799(88)90078-9. [DOI] [Google Scholar]
  18. Boraston R, Thompson PW, Garland S, Birch JR. Growth and oxygen requirements of antibody producing mouse hybridoma cells in suspension culture. Develop Biol Standard. 1984;55:103–111. [PubMed] [Google Scholar]
  19. Born C, Zhang Z, Al-Rubeai M, Thomas CR. Estimation of disruption of animal cells by laminar shear stress. Biotech Bioeng. 1992;40:1004–1010. doi: 10.1002/bit.260400903. [DOI] [PubMed] [Google Scholar]
  20. Borys MC, Linzer DIH, Papoutsakis ET. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH dependent manner. Biotech Bioeng. 1994;43:505–514. doi: 10.1002/bit.260430611. [DOI] [PubMed] [Google Scholar]
  21. Broad DF, Brown ME, Grant AP and Wood LA (1989) Scale up of mammalian call culture, in Advances in Animal Cell Biology and Technology for Bioprocesses, Spier RE, Griffiths JB, Stephenne J and Crooy PJ (Eds) pp. 412-415.
  22. Byun TG, Zeng AP, Deckwer WD. Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by enterobacter aerogenes at constant oxygen transfer rate. Bioprocess Engineering. 1994;11:167–175. [Google Scholar]
  23. Chalmers JJ. Cells and bubbles in sparged bioreactors. Cytotechnology. 1994;15:311–320. doi: 10.1007/BF00762406. [DOI] [PubMed] [Google Scholar]
  24. Chang YHD, Grodzinsky AJ, Wang DIC. Nutrient enrichment and in-situ waste removal through electrical means for hybridoma cultures. Biotech Bioeng. 1995;47:319–326. doi: 10.1002/bit.260470306. [DOI] [PubMed] [Google Scholar]
  25. Chang YHD, Grodzinsky AJ, Wang DIC. In situ removal of ammonium and lactate through electrical means for hybridoma cultures. Biotech Bioeng. 1995;47:308–318. doi: 10.1002/bit.260470305. [DOI] [PubMed] [Google Scholar]
  26. Cherry RS and Papoutsakis ET (1990) Fluid mechanical injury of cells in bioreactors, Chapter 3, In Animal cell biotechnology, Vol 4, Spier RE and Griffiths JB (Eds), pp. 71-121.
  27. Cherry RS. Animal cells in turbulent fluids — details of the physical stimulus and the biological response. Biotech Adv. 1993;11(2):279–299. doi: 10.1016/0734-9750(93)90043-M. [DOI] [PubMed] [Google Scholar]
  28. Chisti Y. Animal cell culture in stirred bioreactors: observations on scale up. Bioprocess Engineering. 1993;9:191–196. doi: 10.1007/BF00369402. [DOI] [Google Scholar]
  29. Chisti MY, Moo Young M. Airlift reactors: characteristics, applications and design considerations. Chem Eng Comm. 1987;60:195–424. [Google Scholar]
  30. Chisti MY, Halard B, Moo-Young M. Liquid circulation in airlift reactors. Chem Eng Sci. 1988;43(3):451–457. doi: 10.1016/0009-2509(88)87005-2. [DOI] [Google Scholar]
  31. Choi PB. Designing airlift loop fermenters. Chem Eng Progress. 1990;86:32. [Google Scholar]
  32. Chudacek MW (1984) Does your tank bottom have the right shape, Chemical Engineering October 1: 79-83.
  33. Chung IS, Taticek RA, Shuler ML. Production of human alkaline phosphatase, a secreted, glycosylated protein, from a baciulovirus expression system and the attachment-dependent cell line trichoplusia ni bti-tn 5b1-4 using a split flow, air lift bioreactor. Biotechnol Prog. 1993;9:675–678. doi: 10.1021/bp00024a018. [DOI] [PubMed] [Google Scholar]
  34. Clark NN, Flemmer RL. predicting the hold up in two phase bubble upflow and downflow using the Zuber and Findlay drift flux model. AIChE Journal. 1985;31(3):500–503. doi: 10.1002/aic.690310323. [DOI] [Google Scholar]
  35. Cooney CL. Are we prepared for animal cell technology in the 21st century? In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. animal cell technology: developments towards the 21st century. The Netherlands: Kluwer; 1995. [Google Scholar]
  36. Cronin DG and Nienow AW (1989) Mixing studies in a large laboratory proto fermenter: Rushton turbines, Proceedings of the Third NEL Bioreactor Research Symposium Paper No. 1-C, 17-34.
  37. Dorresteijn D., Tramper, Beuvery A simple dynamic method for on-line and off-line determination of kLa during cultivation of animal cells. Biotech Techniques. 1994;8(9):675–680. doi: 10.1007/BF00241697. [DOI] [Google Scholar]
  38. Fields PR, Slater NKH. Tracer dispersion in a laboratory air lift reactor. Chem Eng Sci. 1983;38(4):647–653. doi: 10.1016/0009-2509(83)80124-9. [DOI] [Google Scholar]
  39. Fields PR, Slater NKH. The influence of fluid mixing upon respiratory patterns for extended growth of a methylotroph in an air lift fermenter. Biotech Bioeng. 1984;23:719–726. doi: 10.1002/bit.260260714. [DOI] [PubMed] [Google Scholar]
  40. Fleischaker RJ, Sinskey A. Oxygen demand and supply in cell culture. European J Appl Microbiol Biotechnol. 1981;12:193–197. doi: 10.1007/BF00499486. [DOI] [Google Scholar]
  41. Flickinger MC, Goebel NK, Bibila T, Boyc-Jacino S. Evidence of post transcriptional stimulation of monoclonal antibody secretion by L-glutamine during slow hybridoma growth. J Biotechnology. 1992;22:201–226. doi: 10.1016/0168-1656(92)90142-V. [DOI] [PubMed] [Google Scholar]
  42. Gardner AR, Gainer JL, Kirwan DJ. Effects of stirring and sparging on cultured hybridoma cells. Biotech Bioeng. 1990;35(9):940–947. doi: 10.1002/bit.260350912. [DOI] [PubMed] [Google Scholar]
  43. Geisler RK, Buurman C, Mersmann AB. Scale up of the necessary power input in stirred vessels with suspensions. Chem Eng Journal. 1993;51:29–39. doi: 10.1016/0300-9467(93)80005-9. [DOI] [Google Scholar]
  44. Glacken MW, Fleischaker RJ, Sinskey AJ. Mammalian cell culture: engineering principles and scale-up. Trends in Biotechnology. 1983;1:102–108. doi: 10.1016/0167-7799(83)90032-X. [DOI] [Google Scholar]
  45. Gray DR, Chen S, Howarth W, Inlow D, Maiorella CO2 in large scale and high density CHO cell perfusion culture. Cytotechnology. 1996;22:65–78. doi: 10.1007/BF00353925. [DOI] [PubMed] [Google Scholar]
  46. Griffiths JB. Overview of cell culture systems and their scale up, Chapter 7. In: Spier RE, Griffiths JB, editors. Animal cell biotechnology. London: Academic Press; 1988. pp. 179–220. [Google Scholar]
  47. Gunzel B, Yonsel S, Deckwer WD. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 M3. Appl Microbiol Biotechnol. 1991;36:289–294. [Google Scholar]
  48. Handa-Corrigan A, Emery AN, Spier RE. Effect of gas-liquid interfaces on growth of suspended mammalian cells: mechanism of cell damage by bubbles. Enzyme and Microbial Technol. 1989;11:230–235. doi: 10.1016/0141-0229(89)90097-5. [DOI] [Google Scholar]
  49. Handa-Corrigan A. Oxygenating animal cell cultures: the remaining problems, Chapter 4. In: Spier RE, Griffiths JB, editors. Animal cell biotechnology. London: Academic Press; 1990. pp. 123–132. [Google Scholar]
  50. Hofmann F, Wrasidlo W, de Winter D and Gallagher S (1989) Fully integrated, compact membrane reactor systems for the large scale production of monoclonal antibodies, In Advances in Animal Cell Biology and Technology for Bioprocesses, Spier RE, Griffiths JB, Stephenne J and Crooy PJ (Eds) pp. 305-310.
  51. Horvarth BE. Mammalian cell culture scale-up: is bigger better? Bio/Technology. 1989;7:468–469. doi: 10.1038/nbt0589-468. [DOI] [Google Scholar]
  52. Hsu YC, Dudukovic MP. Gas hold up and liquid recirculation in gas-lift reactors. Chem Eng Sci. 1980;35:135–141. doi: 10.1016/0009-2509(80)80080-7. [DOI] [Google Scholar]
  53. Hu WS, Meier J, Wang DIC. Use of surface aerator to improve oxygen transfer in cell culture. Biotech Bioeng. 1986;28:122–125. doi: 10.1002/bit.260280120. [DOI] [PubMed] [Google Scholar]
  54. Hu W, Peshwa M. Animal cell bioreactors-recent advances and challenges to scale up. Can J Chem Eng. 1991;69:409. doi: 10.1002/cjce.5450690203. [DOI] [Google Scholar]
  55. Jem KW (1989) Scale down techniques for fermentation, Pharmaceutical Technology International, May/June, 60-65.
  56. Jobses I, Martens D, Tramper J. Lethal events during gas sparging in animal cell culture. Biotech Bioeng. 1991;37(5):484–490. doi: 10.1002/bit.260370510. [DOI] [PubMed] [Google Scholar]
  57. Jones AG. Liquid circulation in a draft tube bubble column. Chem Eng Sci. 1985;40(3):449–462. doi: 10.1016/0009-2509(85)85106-X. [DOI] [Google Scholar]
  58. Ju L-K, Chase GG. Improved scale up strategies of bioreactors. Bioprocess Engineering. 1992;8:49–53. doi: 10.1007/BF00369263. [DOI] [Google Scholar]
  59. Junker BH, Hunt G, Burgess B, Aunins J, Buckland BC. Modified microbial fermenter performance in animal cell culture and its implications for flexible fermenter design. Bioprocess Engineering. 1994;11:57–63. doi: 10.1007/BF00389561. [DOI] [Google Scholar]
  60. Katinger HWD, Scheirer W, Kromer E. Bubble column reactor for mass propagation of animal cells in suspension culture. Ger Chem Eng. 1979;2:31–38. [Google Scholar]
  61. Kawase Y. Design and scale up of external loop airlift bioreactor. In: Galindo E, Ramirez OT, editors. Advances in Bioprocess Engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 13–19. [Google Scholar]
  62. Kearns M. Integrated design for mammalian cell culture. Bio/Technology. 1990;8:409–413. doi: 10.1038/nbt0590-409. [DOI] [PubMed] [Google Scholar]
  63. Keller J, Dunn IJ. A fluidized bed reactor for cultivation of animal cells. In: Galindo E, Ramirez OT, editors. Advances in Bioprocess Engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 115–121. [Google Scholar]
  64. Kioukia N, Nienow AW, Emery AN, Al-Rubeai M. The impact of fluid dynamics on the biological performance of free suspension animal cell culture: Further studies. Trans I Chem E. 1992;70C:143–148. [Google Scholar]
  65. Kossen NWF. Scale-up. In: Galindo E, Ramirez OT, editors. Advances in bioprocess engineering. The Netherlands: Kluwer Academic Publishers; 1995. pp. 53–65. [Google Scholar]
  66. Kubota H, Hosono Y, Fujie K. Characteristic evaluations of ICI air lift type deep shaft aerator. J Chem Eng Japan. 1978;11(4):319–325. [Google Scholar]
  67. Kunas KT, Papoutsakis Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotech Bioeng. 1990;36(5):476–483. doi: 10.1002/bit.260360507. [DOI] [PubMed] [Google Scholar]
  68. Kurano N, Leist C, Messi F, Kurano S, Fiechter A. Growth behaviour of chinese hamster ovary cells in a compact loop bioreactor. 2 Effects of medium components and waste products. J Biotechnology. 1990;15:113–128. doi: 10.1016/0168-1656(90)90055-G. [DOI] [PubMed] [Google Scholar]
  69. Lapin A, Paaschen T and Lubbert A (1996) A mechanistic approach to bioreactor fluid dynamics, Fronteras en Biotecnologia Bioingenieria, Sociedad Mexicana de Biotecnologia Bioingeneiria, Galindo E (Ed) pp. 179-196.
  70. Lavery M, Nienow AW. Oxygen transfer in animal cell culture medium. Biotech Bioeng. 1987;30:368–373. doi: 10.1002/bit.260300307. [DOI] [PubMed] [Google Scholar]
  71. Leist CH, Meyer HP, Fiechter A. Potential problems of animal cells in suspension culture. J Biotechnology. 1990;15:1–46. doi: 10.1016/0168-1656(90)90049-H. [DOI] [PubMed] [Google Scholar]
  72. Leist C, Meyer HP, Fiechter A. process control during the suspension culture of a human melanoma cell line in a mechanically stirred loop reactor. J Biotechnology. 1986;4:235–246. doi: 10.1016/0168-1656(86)90028-3. [DOI] [Google Scholar]
  73. Leng DE. Succeed at scale up. Chem Eng Progress. 1991;6:23–31. [Google Scholar]
  74. Lippert J, Adler I, Meyer HD, Lubbert A, Schugerl K. Characterisation of the two-phase systems in airlift tower-loop bioreactors during cultivation of E-coli. Biotech Bioeng. 1983;25:437–450. doi: 10.1002/bit.260250211. [DOI] [PubMed] [Google Scholar]
  75. Lu GZ, Thompson BG, Suresh MR, Gray MR. Cultivation of hybridoma cells in an inclined bioreactor. Biotech Bioeng. 1995;45:176–186. doi: 10.1002/bit.260450212. [DOI] [PubMed] [Google Scholar]
  76. Lu WJ, Hwang SJ, Chang CM. Liquid mixing in internal loop airlift reactors. Ind Eng Chem Res. 1994;33:2180–2186. doi: 10.1021/ie00033a023. [DOI] [Google Scholar]
  77. Lubbert A, Frolich S, Larson B, Schugerl K. Fluid dynamics in airlift loop bioreactors as measured during real cultivation processes, paper H1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 379–393. [Google Scholar]
  78. Machon V, Pacek AW, Nienow AW. Bubble sizes in electrolyte and alcohol solutions in a turbulent stirred vessel. Trans I Chem E. 1997;75A:339–348. doi: 10.1205/026387697523651. [DOI] [Google Scholar]
  79. Martin N, Brennen A, Denome L, Shaevitz High productivity in mammalian cell culture. Bio/Technology. 1987;5:838–840. doi: 10.1038/nbt0887-838. [DOI] [Google Scholar]
  80. Mayr B, Nagy E, Horvat P, Moser A. Scale up on basis of structured mixing models: a new concept. Biotech Bioeng. 1994;43:195–206. doi: 10.1002/bit.260430303. [DOI] [PubMed] [Google Scholar]
  81. Merchuk, Niranjan Why use bubble column bioreactors. TIBTECH. 1994;12:501–511. [Google Scholar]
  82. Merchuk JC. Gas hold-up and liquid velocity in a two dimensional air lift reactor. Chem Eng Sci. 1986;41(1):11–16. doi: 10.1016/0009-2509(86)85192-2. [DOI] [Google Scholar]
  83. Merchuk JC. Why use air-lift bioreactors? TIBTECH. 1990;8:66–71. [Google Scholar]
  84. Merchuk JC, Siegel MH. Air-lift reactors in chemical and biological technology. J Chem Tech Biotechnol. 1988;41:105–120. [Google Scholar]
  85. Merchuk JC, Stein Y. Local gas hold up and liquid velocity in air lift reactors. AIChEJ. 1981;27(3):377–388. doi: 10.1002/aic.690270307. [DOI] [Google Scholar]
  86. Merchuk JC, Stein Y. A distributed parameter model for an airlift fermentor, effects of pressure. Biotech Bioeng. 1981;23:1309–1324. doi: 10.1002/bit.260230611. [DOI] [Google Scholar]
  87. Michaels J, Mallik AK, Nowak JE, Wasan DT, Papoutsakis ET. Dynamic interfacial tension and rheological properties of cell culture medium with shear protectant additives. In: Spier RE, Griffiths JB, Berthold W, editors. Animal Cell Technology: Products of Today, Prospects for Tomorrow. Oxford: Butterworth-Heinemann Ltd; 1994. pp. 389–391. [Google Scholar]
  88. Miller WM, Wilkie CR, Blanch HW. Transient responses of hybridoma cells to lactate and ammonia pulse and step changes in continuous culture. Bioprocess Engineering. 1988;3:113–122. doi: 10.1007/BF00373474. [DOI] [Google Scholar]
  89. Monahan PB, Holtzapple MT. Oxygen transfer in a pulse bioreactor. Biotech Bioeng. 1993;42:724–728. doi: 10.1002/bit.260420607. [DOI] [PubMed] [Google Scholar]
  90. Moo Young and Chisti (1988) Considerations for designing bioreactors for shear sensitive culture. Bio/Technology Nov, 1291-1296.
  91. Moreira JL, Cruz PE, Santana PC, Feliciano AS. Influence of power input and aeration method on mass transfer in a laboratory animal cell culture vessel. J Chem Tech Biotechnol. 1995;62:118–131. doi: 10.1002/jctb.280620203. [DOI] [Google Scholar]
  92. Nelson KL (1988a) Industrial scale mammalian cell culture part I: bioreactor design considerations. Biopharm Manufact, Feb, 42-46.
  93. Nelson KL (1988b) Industrial scale mammalian cell culture part II: design and scale up. Biopharm Manufact, Feb, 47-55.
  94. Nienow A. Gas dispersion performance in fermenter operation. Chem Eng Prog. 1990;86(2):61–71. [Google Scholar]
  95. Nienow AW, Warmoeskerken MMCG, Smith JM and Konno M (1985) On the flooding/loading transition and the complete dispersal condition in aerated vessels agitated by a Rushton turbine, 5th European Conference on Mixing, BHRA, Cranfield, 143-154.
  96. Nienow AW, Langheinrich C, Stevenson NC, Emery AN, Clayton TM, Slater NKH. Homogenisation and oxygen transfer rates in large agitated and sparged animal cell bioreactors: Some implications for growth and production. Cytotechnology. 1996;22:87–94. doi: 10.1007/BF00353927. [DOI] [PubMed] [Google Scholar]
  97. Oh SKW, Vig P, Chua F, Teo WK, Yap MGS. Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotech Bioeng. 1993;42:601–610. doi: 10.1002/bit.260420508. [DOI] [PubMed] [Google Scholar]
  98. Oh SKW, Chua FKF, Choo ABH. Intracellular responses of productive hybridomas subjected to high osmotic pressure. Biotech Bioeng. 1995;46:525–535. doi: 10.1002/bit.260460605. [DOI] [PubMed] [Google Scholar]
  99. Ohta N, Park YS, Yahiro K, Okabe M. Comparison of neomycin production from streptomyces fradiae cultivation using soybean oil as the sole carbon source in an air lift bioreactor and a stirred tank. J Fermentation Bioengineering. 1995;79(5):443–448. doi: 10.1016/0922-338X(95)91259-8. [DOI] [Google Scholar]
  100. Oosterhuis NMG, Kossen NWF. Dissolved oxygen concentration profiles in a production scale bioreactor. Biotech Bioeng. 1984;26:546–550. doi: 10.1002/bit.260260522. [DOI] [PubMed] [Google Scholar]
  101. Onken U, Weiland P. Airlift fermenters: construction, behaviour and uses. Advances in Biotechnological Processes. 1983;1:67–95. [Google Scholar]
  102. Orazem ME, Fan LT, Erickson LE. Bubble flow in the downflow section of an airlift tower. Biotech Bioeng. 1979;21:1579–1606. doi: 10.1002/bit.260210907. [DOI] [Google Scholar]
  103. Oyaas K, Ellingsen TE, Dyrset N, Levine DW. Utilisation of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress. Biotech Bioeng. 1994;43:77–89. doi: 10.1002/bit.260430111. [DOI] [PubMed] [Google Scholar]
  104. Oyaas K, Berg TM, Bakke O, Levine DW. Hybridoma growth and antibody production under conditions of hyperosmotic stress. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Sevenoaks, Kent U.K.: Butterworths; 1989. pp. 212–220. [Google Scholar]
  105. Ozturk S, Palsson B. Growth, metabolic and antibody production kinetics of hybridoma cell culture I Analysis of data from controlled batch reactors. Biotechnol Prog. 1991;7:471–480. doi: 10.1021/bp00012a001. [DOI] [PubMed] [Google Scholar]
  106. Ozturk SS, Riley MR, Palsson BO. Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotech Bioeng. 1992;39:418–431. doi: 10.1002/bit.260390408. [DOI] [PubMed] [Google Scholar]
  107. Ozturk SS, Palsson BO. Effect of medium osmolarity on hybridoma growth, metabolism and antibody production. Biotech Bioeng. 1991;37:989–993. doi: 10.1002/bit.260371015. [DOI] [PubMed] [Google Scholar]
  108. Ozturk SS, Palsson BO. Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 1. analysis of data from controlled batch reactors. Biotechnol Prog. 1991;7:471–480. doi: 10.1021/bp00012a001. [DOI] [PubMed] [Google Scholar]
  109. Papoutsakis TE, Kunas KT. Hydrodynamic effects of cultured hybridoma cells CRL 8018 in an agitated bioreactor. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in animal cell biology and technology for bioprocesses. Sevenoaks, Kent, U.K.: Butterworths; 1989. pp. 203–211. [Google Scholar]
  110. Papoutsakis ET. Media additives for protecting freely suspended animal cells against agitation and aeration damage. Trends in Biotechnology. 1991;9:316–397. doi: 10.1016/0167-7799(91)90102-N. [DOI] [PubMed] [Google Scholar]
  111. Park SY, Lee GM. Enhancement of monoclonal antibody production by immobilised hybridoma cell culture with hyperosmolar medium. Biotech Bioeng. 1995;48:699–705. doi: 10.1002/bit.260480618. [DOI] [PubMed] [Google Scholar]
  112. Parthasarathy R, Jameson GJ, Ahmed N. Bubble break up in stirred vessels-predicting the Sauter mean diameter. Trans I Chem E. 1991;69A:295–301. [Google Scholar]
  113. Peshwa MV, Kyung Y-S, McClure DB, Hu W-S. Cultivation of mammalian cells as aggregates in bioreactors: effect of calcium concentration on spatial distribution of viability. Biotech Bioeng. 1993;41:179–187. doi: 10.1002/bit.260410203. [DOI] [PubMed] [Google Scholar]
  114. Phillips AW, Ball GD, Fantes KH, Finter NB, Johnson MD. Experience in the cultivation of mammalian cells on the 8000 L scale. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 87–95. [Google Scholar]
  115. Pullen KF, Johnson MD, Phillips AW, Ball GD, Finter NB. Very large scale suspension cultures of mammalian cells. Develop Biol Standard. 1984;60:175–177. [PubMed] [Google Scholar]
  116. Ray NG, Rivera R, Gupta R, Mueller D, et al. Large scale production of humanised monoclonal antibody expresses in a GS-NSO cell line. In: Carrondo MJT, et al., editors. Animal Cell Technology. The Netherlands: Kluwer Academic Publishers; 1997. pp. 235–241. [Google Scholar]
  117. Reddy S, Miller WM. Effects of abrupt and gradual osmotic stress on antibody production and content in hybridoma cells that differ in production kinetics. Biotechnol Prog. 1994;10:165–173. doi: 10.1021/bp00026a006. [DOI] [PubMed] [Google Scholar]
  118. Reisman HB. Problems in scale up of biotechnology production processes. Critical Reviews in Biotechnology. 1993;13(3):195–253. doi: 10.3109/07388559309041319. [DOI] [PubMed] [Google Scholar]
  119. Reuss M. Stirred tank bioreactors. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 207–255. [Google Scholar]
  120. Reuss M. Oxygen transfer and mixing: scale up implications, Chapter 10. In: Stephanopoulos G, editor. Biotechnology V 3: Bioprocessing. Weinheim, Germany: VCH; 1993. pp. 186–217. [Google Scholar]
  121. Reuveny S and Lazar A (1989) Equipment and procedures for production of monoclonal antibodies in culture. In Monoclonal antibodies and applications Vol 11, Liss AR (Ed) pp. 45-80. [PubMed]
  122. Rice JW, Rankl NB, Gurganus TM, Marr CM, Barna JB, Walters MM, Burns DJ. A comparison of large scale Sf9 insect cell growth and protein production: stirred vessel vs airlift. BioTechniques. 1993;15(6):1052–1059. [PubMed] [Google Scholar]
  123. Royce PNC, Thornhill NF. Estimation of dissolved carbon dioxide concentrations in aerobic fermentations. AICh EJ. 1991;37(11):1680–1686. doi: 10.1002/aic.690371111. [DOI] [Google Scholar]
  124. Russell AB, Thomas CR, Lilly MD. The influence of vessel height and top section size on the hydrodynamics characteristics of air lift fermenters. Biotech Bioeng. 1994;43:69–76. doi: 10.1002/bit.260430110. [DOI] [PubMed] [Google Scholar]
  125. Russell AB, Thomas CR, Lilly MD. Oxygen transfer measurements during yeast fermentations in a pilot scale airlift fermenter. Bioprocess Engineering. 1995;12:71–79. [Google Scholar]
  126. Schlaeger EJ, Schumpp B. Studies on mammalian cell growth in suspension culture. In: Spier RE, Griffiths JB, Stephenne J, Crooy PJ, editors. Advances in Animal Cell Biology and Technology for Bioprocesses. Sevenoaks, Kent, U.K.: Butterworths; 1989. pp. 386–396. [Google Scholar]
  127. Schugerl K, Lubbert A. Pneumatically driven bioreactors. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 257–303. [Google Scholar]
  128. Siegel MH, Robinson CW. Applications of airlift gas-liquid solid reactors in biotechnology. Chem Eng Sci. 1992;47(13/14):3215–3229. doi: 10.1016/0009-2509(92)85030-F. [DOI] [Google Scholar]
  129. Shin CS, Kim SY, Ju JY. Characteristics of sisomicin fermentation supplemented with MgSO4 in stirred and air lift fermenters. Biotechnology Letters. 1994;16(3):251–256. doi: 10.1007/BF00134621. [DOI] [Google Scholar]
  130. Smart NJ (1984) Gas lift fermenters: theory and practice, Laboratory Practice, July, 9–14.
  131. Smith JM, Davison SW. Development of a strategy to control the dissolved concentrations of oxygen and carbon dioxide at constant shear in a plant cell bioreactor. Biotech Bioeng. 1990;35:1088–1101. doi: 10.1002/bit.260351104. [DOI] [PubMed] [Google Scholar]
  132. Sola C, Godia F. Scale up. In: Asenjo JA, Merchuk JC, editors. Bioreactor system design. New York: Marcel Dekker; 1995. pp. 511–552. [Google Scholar]
  133. Stejskal J, Potucek F. Oxygen transfer in liquids. Biotech Bioeng. 1985;27:503–508. doi: 10.1002/bit.260270416. [DOI] [PubMed] [Google Scholar]
  134. Sucker HG, Jordan M, Eppenberger HM, Widmer F. Bubble bed reactor: a reactor design to minimise the damage of bubble aeration on animal cells. Biotech Bioeng. 1994;44:1246–1254. doi: 10.1002/bit.260441012. [DOI] [PubMed] [Google Scholar]
  135. Takagi M, Ohara K-I, Yoshida T. Effect of hydrostatic pressure on hybridoma cell metabolism. J Fermentation and Bioengineering. 1995;80(6):619–621. doi: 10.1016/0922-338X(96)87744-0. [DOI] [Google Scholar]
  136. Tokashiki M, Takamatsu H. Perfusion culture apparatus for suspended mammalian cells. Cytotechnology. 1993;13:149–159. doi: 10.1007/BF00749811. [DOI] [PubMed] [Google Scholar]
  137. Tolbert WR, Lewis C, White PJ, Feder J. Perfusion culture systems for production of mammalian cell biomolecules. In: Feder J, Tolbert WR, editors. Large scale mammalian cell culture. Orlando: Academic Press Inc; 1985. pp. 97–119. [Google Scholar]
  138. Tramper J, Smit D, Straatman J, Vlak JM. Bubble column design for growth of fragile insect cells. Bioprocess Engineering. 1987;2:37–41. [Google Scholar]
  139. Tramper J, de Gooijer KD, Vlak JM. Scale up considerations and bioreactor development for animal cell cultivation. Insect Cell Culture Engineering: Bioprocess Technology. 1993;17:139–177. [PubMed] [Google Scholar]
  140. Tramper J. Oxygen gradients in animal cell bioreactors. In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. animal cell technology: developments towards the 21st century. The Netherlands: Kluwer Academic Publishers; 1995. pp. 883–891. [Google Scholar]
  141. Trinh K, Garciabriones M, Hink F, Chalmers JJ. Quantification of damage to suspended insect cells as a result of bubble rupture. Biotech Bioeng. 1994;43(1):37–45. doi: 10.1002/bit.260430106. [DOI] [PubMed] [Google Scholar]
  142. Van Brunt J. How big is big enough. Bio/Technology. 1988;6(5):480–485. [Google Scholar]
  143. Van der Pol LA, Beeksma I, Tramper J. Polyethylene glycol as protectant against damage caused by sparging for hybridoma suspension cells in a bubble column. Enzyme Microb Technol. 1995;17:401–407. doi: 10.1016/0141-0229(94)00063-W. [DOI] [Google Scholar]
  144. Van der Pol L, Bakker WAM, Tramper J. Effect of low serum concentrations on growth, production and shear sensitivity of hybridoma cells. Biotech Bioeng. 1992;40(1):179–180. doi: 10.1002/bit.260400125. [DOI] [PubMed] [Google Scholar]
  145. Van der Pol L, Bonarius D, Vandewouw G, Tramper J. Effect of silicone antifoam on shear sensitivity of hybridoma cells in sparged cultures. Biotech Progress. 1993;9(5):504–509. doi: 10.1021/bp00023a009. [DOI] [PubMed] [Google Scholar]
  146. Verlaan P, Tramper J, Van't R. A hydrodynamic model for an airlift loop bioreactor with external loop. Chem Eng Journal. 1986;33:B43–B53. doi: 10.1016/0300-9467(86)80052-1. [DOI] [Google Scholar]
  147. Verlaan P, Tramper J, van't Riet K, Luyben K. Hydrodynamics and axial dispersion in an air lift loop bioreactor with two and three phase flow. Proc International Conf on Bioreactor Fluid Dynamics BHRA Fluid Engineering. 1986;7:93–107. [Google Scholar]
  148. Verlaan P, Van Ejis AMM, Tramper J, van't Riet K, Luyben K. Estimation of axial dispersion in individual sections of an airlift loop reactor. Chem Eng Sci. 1989;44(5):1139–1146. doi: 10.1016/0009-2509(89)87013-7. [DOI] [Google Scholar]
  149. Verlaan P, Vos JC, van't Riet K. From bubble column to air lift loop reactor: hydrodynamics and axial dispersion of the transition flow regime, paper F1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 259–275. [Google Scholar]
  150. Voncken RM, Holmes DB, Den Hartog HW. Fluid flow in turbine stirred, baffled tanks II: dispersion during circulation. Chem Eng Sci. 1964;19:209–213. doi: 10.1016/0009-2509(64)85031-4. [DOI] [Google Scholar]
  151. Votruba J, Sobotka M. Physiological similarity and bioreactor scale up. Folia Microbiol. 1992;37(5):331–345. [Google Scholar]
  152. Wang Y-D, Mann R. Partial segregation in stirred batch reactors. Trans IChemE. 1992;70A:283–290. [Google Scholar]
  153. Wayte J, Boraston R, Bland H, Varley J, Brown M. pH: Effects on growth and productivity of cell lines producing monoclonal antibodies: control in large scale fermenters. The Genetic Engineer and Biotechnologist. 1997;17(2–3):125–132. [Google Scholar]
  154. Werner RG (1994) Potential and efficiency in the biotechnical process, Pharmaceutical Technology Europe, May, pp. 20-28.
  155. Werner R, Walz F, Noe W, Konrad A. Safety and economic aspects of continuous mammalian cell culture. J Biotechnol. 1992;22:51–68. doi: 10.1016/0168-1656(92)90132-S. [DOI] [PubMed] [Google Scholar]
  156. Whitton M. Power and mass transfer studies in a tall vessel equipped with three impellers, paper D1. In: King R, editor. BHRA 2nd International Conference on Bioreactor Fluid Dynamics. Oxford: Elsevier Applied Science; 1988. pp. 135–158. [Google Scholar]
  157. Wu W-T, Jong J-Z. Liquid phase dispersion in an airlift reactor with a net draft tube. Bioprocess Eng. 1994;11:43–47. doi: 10.1007/BF00389559. [DOI] [Google Scholar]
  158. Yang JD, Wang NS. Cell inactivation in the presence of sparging and mechanical agitation. Biotech Bioeng. 1992;40(7):806–816. doi: 10.1002/bit.260400708. [DOI] [PubMed] [Google Scholar]
  159. Zhang S, Handa-Corrigan A, Spier RE. Oxygen transfer properties of bubbles in animal cell culture media. Biotech Bioeng. 1992;40:252–259. doi: 10.1002/bit.260400209. [DOI] [PubMed] [Google Scholar]
  160. Zhang A., Thomas Comparison of fragility of several animal cell lines. Biotech Techniques. 1993;7(3):177–182. [Google Scholar]
  161. Zhang ZB, Thomas CR. Micromanipulation — a new approach to studying animal cell damage in bioreactors. The Genetic Engineer and Biotechnologist. 1993;13(1):19–29. [Google Scholar]
  162. Zhou W, Bibila T, Glazonitsky K, Montalvo J, Chan C, Di Stefano D, Munshi S, Robinson D, Buckland B, Aunins J. Large scale production of recombinant mouse and rat growth hormone by fed-batch GS-NSO cell cultures. Cytotechnology. 1996;22:239–250. doi: 10.1007/BF00353944. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES