Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 May;29(3):167–176. doi: 10.1023/A:1008063324292

Error analysis of metabolic-rate measurements in mammalian-cell culture by carbon and nitrogen balances

Hendrik PJ Bonarius 1,, José Hm Houtman 1, Georg Schmid 1, Cornelis D de Gooijer 2, Johannes Tramper 2
PMCID: PMC3463395  PMID: 19003341

Abstract

The analysis of metabolic fluxes of large stoichiometric systems is sensitive to measurement errors in metabolic uptake and production rates. It is therefore desirable to independently test the consistency of measurement data, which is possible if at least two elemental balances can be closed. For mammalian-cell culture, closing the C balance has been hampered by problems in measuring the carbon-dioxide production rate. Here, it is shown for various sets of measurement data that the C balance can be closed by applying a method to correct for the bicarbonate buffer in the culture medium. The measurement data are subsequently subject to measurement-error analysis on the basis of the C and N balances. It is shown at 90% reliability that no gross measurement errors are present, neither in the measured production- and consumption rates, nor in the estimated in- and outgoing metabolic rates of te subnetwork, that contains the glycolysis, the pentose-phosphate, and the glutaminolysis pathways.

Keywords: elemental balances, mammalian-cell culture, gross error detection, conservation equations

Full Text

The Full Text of this article is available as a PDF (96.7 KB).

References

  1. Bonarius HPJ, De Gooijer CD, Tramper J, Schmid G. Determination of the respiration quotient of mammalian-cell culture in bicarbonate-buffered media. Biotechnol Bioeng. 1995;45:524–535. doi: 10.1002/bit.260450610. [DOI] [PubMed] [Google Scholar]
  2. Bonarius HPJ, Hatzimanikatis V, Meesters KPH, Schmid G, De Gooijer CD, Tramper J. Metabolic flux analysis in mammalian cells in different media using mass balances. Biotechnol Bioeng. 1996;50:299–318. doi: 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  3. Bonarius HPJ, Schmid G, Tramper J. Flux analysis of underdetermined metabolic networks: The Quest for the Missing Constraint. Trends in Biotechnol. 1997;15:308–314. doi: 10.1016/S0167-7799(97)01067-6. [DOI] [Google Scholar]
  4. Bonarius HPJ, Houtman JHM, De Gooijer CD, Tramper J, Schmid G. The activity of glutamate dehydrogenase is increased in ammonia-stressed hybridoma cells. Biotechnol Bioeng. 1998;57:447–453. doi: 10.1002/(SICI)1097-0290(19980220)57:4<447::AID-BIT8>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  5. Bonarius HPJ, Houtman JHM, Schmid G, De Gooijer CD and Tramper J (1998b) Metabolic-flux analysis of hybridoma cells under oxidative and reductive stress using mass balancing (Submitted). [DOI] [PMC free article] [PubMed]
  6. Box GEP, Hunter WG, Hunter JS. Statistics for experimenters. NY: Wiley and Sons, Inc.; 1978. [Google Scholar]
  7. Creighton TE. Proteins: structures and molecular principles. San Francisco: W. H. Freeman; 1984. [Google Scholar]
  8. Edelman GM, Cunningham BA, Gall WE, Gottlieb PB, Rutishamer U, Waxdal MJ. The covalent structure of an entire gammaG immunoglobuline molecule. Proc Natl Acad Sci USA. 1969;63:78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrer A, Erickson LE. Data consistency, yield maintenance, and hysteresis in batch cultures of Candila lipolytica cultured on n-hexadecane. Biotechnol Bioeng. 1980;22:421–450. doi: 10.1002/bit.260220214. [DOI] [Google Scholar]
  10. Noorman HJ, Heijnen JJ, Luyben KCHAM. Linear relations in microbial reaction systems: a general overview of their origin, fosm, and use. Biotechnol Bioeng. 1991;38:603–618. doi: 10.1002/bit.260380606. [DOI] [PubMed] [Google Scholar]
  11. Ripps DL. Adjustment of experimental data. Chem Eng Progr Symp Ser. 1965;55(61):8–13. [Google Scholar]
  12. Roels JA. Energetics and kinetics in biotechnology. Amsterdam: Elsevier Biomedical Press; 1983. [Google Scholar]
  13. Schmid G, Keller T. Monitoring hybridoma metabolism in continuous suspension culture at the intracellular level. Cytotechnol. 1992;9:217–229. doi: 10.1007/BF02521749. [DOI] [PubMed] [Google Scholar]
  14. Stryer L. Biochemistry. 3rd edition. New York: W. H. Freeman and Company; 1988. [Google Scholar]
  15. Vallino JJ, Stephanopoulos G. Flux determination in cellular bioreaction networks: Applications to lysine fermentations. In: Sikdar SK, Bier M, Todd P, editors. Frontiers in bioprocessing. Boca Rotan, FL: CRC Press; 1989. pp. 205–219. [Google Scholar]
  16. Varma A, Palsson BØ. Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology. 1994;12:994–998. doi: 10.1038/nbt1094-994. [DOI] [Google Scholar]
  17. van der Heijden RTJM, Romein B, Heijnen JJ, Hellinga C, Luyben KCHAM. Linear constraint relations in biochemical reaction systems: II diagnosis and estimation of gross errors. Biotechnol Bioeng. 1994;43:11–20. doi: 10.1002/bit.260430104. [DOI] [PubMed] [Google Scholar]
  18. Von Stockar U, Duboc P, Menoud L, Marison IW. Online calorimetry as a technique for process monitoring and control in biotechnology. Thermochimica Acta. 1997;300:225–236. doi: 10.1016/S0040-6031(97)00055-5. [DOI] [Google Scholar]
  19. Wang NS, Stephanopoulos G. Application of macroscopic balances to the identification of gross measurement errors. Biotechnol Bioeng. 1983;25:2177–2208. doi: 10.1002/bit.260250906. [DOI] [PubMed] [Google Scholar]
  20. Xie L, Wang DIC. Applications if improved stoichiometric model in medium design and fedbatch cultivation of animal cells in bioreactor. Cytotechnol. 1994;15:17–29. doi: 10.1007/BF00762376. [DOI] [PubMed] [Google Scholar]
  21. Zupke C, Stephanopoulos G. Intracellular flux analysis in hybridomas using mass balances and in vitro 13C NMR. Biotechnol Bioeng. 1995;45:292–303. doi: 10.1002/bit.260450403. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES