Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(9):3067–3070. doi: 10.1073/pnas.79.9.3067

Correlation of regional brain metabolism with receptor localization during ketamine anesthesia: combined autoradiographic 2-[3H]deoxy-D-glucose receptor binding technique.

R P Hammer Jr, M Herkenham, C B Pert, R Quirion
PMCID: PMC346350  PMID: 6283555

Abstract

LKB film autoradiography of 2-]3H]deoxy-D-glucose uptake shows that ketamine, administered in anesthetic doses, alters the pattern of metabolic activity in rat hippocampus. The labeled metabolic marker can be washed out of the slide-mounted tissue sections by preincubation to permit in vitro autoradiography of drug and neurotransmitter receptors in the same animal. In this way, opiate and phencyclidine receptor distributions may be correlated with patterns of glucose utilization in adjacent sections. If the observed relative enhancement of 2-deoxy-D-glucose uptake in the stratum moleculare of hippocampus reflects elevated metabolism in nerve terminals there, then the binding of ketamine to phencyclidine receptors on neurons in distant afferent sites, such as entorhinal cortex, may initiate the physiologic and metabolic effects.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atweh S. F., Kuhar M. J. Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 1977 Oct 14;134(3):393–405. doi: 10.1016/0006-8993(77)90817-4. [DOI] [PubMed] [Google Scholar]
  2. Doherty J. D., Simonovic M., So R., Meltzer H. Y. The effect of phencyclidine on dopamine synthesis and metabolic in rat striatum. Eur J Pharmacol. 1980 Jul 25;65(2-3):139–149. doi: 10.1016/0014-2999(80)90386-6. [DOI] [PubMed] [Google Scholar]
  3. Goochee C., Rasband W., Sokoloff L. Computerized densitometry and color coding of [14C] deoxyglucose autoradiographs. Ann Neurol. 1980 Apr;7(4):359–370. doi: 10.1002/ana.410070414. [DOI] [PubMed] [Google Scholar]
  4. Herkenham M., Pert C. B. In vitro autoradiography of opiate receptors in rat brain suggests loci of "opiatergic" pathways. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5532–5536. doi: 10.1073/pnas.77.9.5532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kennedy C., Des Rosiers M. H., Jehle J. W., Reivich M., Sharpe F., Sokoloff L. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose. Science. 1975 Mar 7;187(4179):850–853. doi: 10.1126/science.1114332. [DOI] [PubMed] [Google Scholar]
  6. Lund J. P., Miller J. J., Courville J. [3H]2-Deoxy-D-glucose capture in the hippocampus and dentate gyrus of ketamine-anesthetized rat. Neurosci Lett. 1981 Jul 2;24(2):149–153. doi: 10.1016/0304-3940(81)90239-1. [DOI] [PubMed] [Google Scholar]
  7. Meibach R. C., Glicks D., Cox R., Maayani S. Localisation of phencyclidine-induced changes in brain energy metabolism. Nature. 1979 Dec 6;282(5739):625–626. doi: 10.1038/282625a0. [DOI] [PubMed] [Google Scholar]
  8. Meibach R. C., Maayani S. Localization of naloxone-sensitive [3H]dihydromorphine binding sites within the hippocampus of the rat. Eur J Pharmacol. 1980 Nov 21;68(2):175–179. doi: 10.1016/0014-2999(80)90318-0. [DOI] [PubMed] [Google Scholar]
  9. Quirion R., Hammer R. P., Jr, Herkenham M., Pert C. B. Phencyclidine (angel dust)/sigma "opiate" receptor: visualization by tritium-sensitive film. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5881–5885. doi: 10.1073/pnas.78.9.5881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schwartz W. J., Smith C. B., Davidsen L., Savaki H., Sokoloff L., Mata M., Fink D. J., Gainer H. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science. 1979 Aug 17;205(4407):723–725. doi: 10.1126/science.462184. [DOI] [PubMed] [Google Scholar]
  11. Smith D. J., Pekoe G. M., Martin L. L., Coalgate B. The interaction of ketamine with the opiate receptor. Life Sci. 1980 Mar 10;26(10):789–795. doi: 10.1016/0024-3205(80)90285-4. [DOI] [PubMed] [Google Scholar]
  12. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  13. Stanfield B. B., Caviness V. S., Jr, Cowan W. M. The organization of certain afferents to the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol. 1979 Jun 1;185(3):461–483. doi: 10.1002/cne.901850304. [DOI] [PubMed] [Google Scholar]
  14. Vincent J. P., Kartalovski B., Geneste P., Kamenka J. M., Lazdunski M. Interaction of phencyclidine ("angel dust") with a specific receptor in rat brain membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4678–4682. doi: 10.1073/pnas.76.9.4678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zukin R. S., Zukin S. R. Demonstration of [3H]cyclazocine binding to multiple opiate receptor sites. Mol Pharmacol. 1981 Sep;20(2):246–254. [PubMed] [Google Scholar]
  16. Zukin S. R., Zukin R. S. Specific [3H]phencyclidine binding in rat central nervous system. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5372–5376. doi: 10.1073/pnas.76.10.5372. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES