Abstract
Transmural stimulation of the isolated adrenal gland of the rat and guinea pig results in secretion of catecholamine. The secretion is due to activation of cholinergic receptors of the adrenal medulla by acetylcholine released from splanchnic nerve terminals after transmural stimulation. Our aim was to see whether the same experimental technique could be used to directly excite the adrenal medullary cell membrane by electrical stimulation and whether such stimulation would result in secretion of catecholamines. We demonstrate here that a single electrical shock to the perfused adrenal gland of the rat results in massive secretion of epinephrine and norepinephrine. The secretion is directly related to the strength and duration of the applied stimulus over a wide range. Catecholamine secretion is unaffected by tetrodotoxin or hexamethonium/atropine but is abolished by Ca2+ lack or 3 mM Mn2+. We suggest that the adrenal medullary membrane undergoes nonpropagated electrotonic depolarization on electric stimulation and thereby voltage-dependent Ca2+ channels are opened to initiate secretion.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biales B., Dichter M., Tischler A. Electrical excitability of cultured adrenal chromaffin cells. J Physiol. 1976 Nov;262(3):743–753. doi: 10.1113/jphysiol.1976.sp011618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt B. L., Hagiwara S., Kidokoro Y., Miyazaki S. Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol. 1976 Dec;263(3):417–439. doi: 10.1113/jphysiol.1976.sp011638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. C., Burke D. H., Treml S. Electrically-induced catecholamine secretion by thin slices of bovine adrenal medulla. Brain Res. 1980 Jul 21;194(1):269–272. doi: 10.1016/0006-8993(80)91342-6. [DOI] [PubMed] [Google Scholar]
- Douglas W. W., Kanno T., Sampson S. R. Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: an analysis employing techniques of tissue culture. J Physiol. 1967 Jan;188(1):107–120. doi: 10.1113/jphysiol.1967.sp008127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felice L. J., Felice J. D., Kissinger P. T. Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem. 1978 Dec;31(6):1461–1465. doi: 10.1111/j.1471-4159.1978.tb06573.x. [DOI] [PubMed] [Google Scholar]
- Ishikawa K., Kanno T. Influences of extracellular calcium and potassium concentrations on adrenaline release and membrane potential in the perfused adrenal medulla of the rat. Jpn J Physiol. 1978;28(3):275–289. doi: 10.2170/jjphysiol.28.275. [DOI] [PubMed] [Google Scholar]
- Kidokoro Y., Ritchie A. K. Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol. 1980 Oct;307:199–216. doi: 10.1113/jphysiol.1980.sp013431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shellenberger M. K., Gordon J. H. A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine, and 5-hydroxytryptamine from discrete brain areas. Anal Biochem. 1971 Feb;39(2):356–372. doi: 10.1016/0003-2697(71)90426-x. [DOI] [PubMed] [Google Scholar]
- Wakade A. R. Facilitation of secretion of catecholamines from rat and guinea-pig adrenal glands in potassium-free medium or after ouabain. J Physiol. 1981;313:481–498. doi: 10.1113/jphysiol.1981.sp013677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakade A. R., Wakade T. D. Release of noradrenaline by one pulse: modulation of such release by alpha-adrenoceptor antagonists and uptake blockers. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):302–309. doi: 10.1007/BF00501310. [DOI] [PubMed] [Google Scholar]
