Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(10):3101–3105. doi: 10.1073/pnas.79.10.3101

Structure of fibroblastic intermediate filaments: analysis of scanning transmission electron microscopy.

A C Steven, J Wall, J Hainfeld, P M Steinert
PMCID: PMC346361  PMID: 6954461

Abstract

The structure of fibroblastic intermediate filaments from Chinese hamster ovary cells has been investigated by scanning transmission electron microscopy. Freshly extracted (native) filaments were compared with filaments reassembled in vitro from purified decamin. From digital micrographs of unstained specimens, direct measurements of linear mass density were performed on many individual filaments. Native filaments beyond a certain minimal length constitute a homogeneous population, averaging 38 +/- 4 kilodaltons (kDal)/nm. A minor but distinct polymorphic variant (23 +/- 4 kDal/nm) was also present as very short filaments or end-segments; these may represent breakdown products or assembly intermediates. Analysis of reassembled filaments demonstrates that the in vitro assembly reaction is--in the main--faithful, although the distribution of their mass measurements is appreciably broader than that of the native data. In addition to the predominant type at 37 +/- 4 kDal/nm and a minor component at 26 +/- 4 kDal/nm, small amounts of a third, more massive, polymorphic variant at 52 +/- 5 kDal/nm were also present. Micrographs of negatively stained specimens clearly demonstrate that the filaments are composed of bundles of protofilaments--each 2-3 nm in diameter--and also reveal an axial periodicity of about 46 nm. The implications of these findings are discussed for three classes of model previously proposed for the structure of intermediate filaments.

Full text

PDF
3101

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cabral F., Gottesman M. M., Zimmerman S. B., Steinert P. M. Intermediate filaments from Chinese hamster ovary cells contain a single protein. Comparison with more complex systems from baby hamster kidney and mouse epidermal cells. J Biol Chem. 1981 Feb 10;256(3):1428–1431. [PubMed] [Google Scholar]
  2. Cabral F., Willingham M. C., Gottesman M. M. Ultrastructural localization to 10 nm filaments of an insoluble 58K protein in cultured fibroblasts. J Histochem Cytochem. 1980 Jul;28(7):653–662. doi: 10.1177/28.7.7391554. [DOI] [PubMed] [Google Scholar]
  3. Cohen N. D., Duc J. A., Beegen H., Utter M. F. Quaternary structure of pyruvate carboxylase from Pseudomonas citronellolis. J Biol Chem. 1979 Sep 25;254(18):9262–9269. [PubMed] [Google Scholar]
  4. Day W. A., Gilbert D. S. X-ray diffraction pattern of axoplasm. Biochim Biophys Acta. 1972 Dec 28;285(2):503–506. doi: 10.1016/0005-2795(72)90342-x. [DOI] [PubMed] [Google Scholar]
  5. Engel A., Meyer J. Preparation of unstained protein structures for mass determination by electron scattering. J Ultrastruct Res. 1980 Aug;72(2):212–222. doi: 10.1016/s0022-5320(80)90059-3. [DOI] [PubMed] [Google Scholar]
  6. Engel A. Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy. 1978;3(3):273–281. doi: 10.1016/s0304-3991(78)80037-0. [DOI] [PubMed] [Google Scholar]
  7. Estis L. F., Haschemeyer R. H. Electron microscopy of negatively stained and unstained fibrinogen. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3139–3143. doi: 10.1073/pnas.77.6.3139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fertig J., Rose H. A reflection on partial coherence in electron microscopy. Ultramicroscopy. 1977 Apr;2(2-3):269–279. doi: 10.1016/s0304-3991(76)91589-8. [DOI] [PubMed] [Google Scholar]
  9. Fraser R. D., MacRae T. P., Suzuki E. Structure of the alpha-keratin microfibril. J Mol Biol. 1976 Dec;108(2):435–452. doi: 10.1016/s0022-2836(76)80129-5. [DOI] [PubMed] [Google Scholar]
  10. Holmes K. C. Protein-RNA interactions during TMV assembly. J Supramol Struct. 1979;12(3):305–320. doi: 10.1002/jss.400120304. [DOI] [PubMed] [Google Scholar]
  11. Krishnan N., Kaiserman-Abramof I. R., Lasek R. J. Helical substructure of neurofilaments isolated from Myxicola and squid giant axons. J Cell Biol. 1979 Aug;82(2):323–335. doi: 10.1083/jcb.82.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamvik M. K. Muscle thick filament mass measured by electron scattering. J Mol Biol. 1978 Jun 15;122(1):55–68. doi: 10.1016/0022-2836(78)90108-0. [DOI] [PubMed] [Google Scholar]
  13. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  14. McLachlan A. D. Coiled coil formation and sequence regularities in the helical regions of alpha-keratin. J Mol Biol. 1978 Sep 5;124(1):297–304. doi: 10.1016/0022-2836(78)90163-8. [DOI] [PubMed] [Google Scholar]
  15. Mosesson M. W., Hainfeld J., Wall J., Haschemeyer R. H. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J Mol Biol. 1981 Dec 15;153(3):695–718. doi: 10.1016/0022-2836(81)90414-9. [DOI] [PubMed] [Google Scholar]
  16. Renner W., Franke W. W., Schmid E., Geisler N., Weber K., Mandelkow E. Reconstitution of intermediate-sized filaments from denatured monomeric vimentin. J Mol Biol. 1981 Jun 25;149(2):285–306. doi: 10.1016/0022-2836(81)90303-x. [DOI] [PubMed] [Google Scholar]
  17. Steinert P. M., Idler W. W., Cabral F., Gottesman M. M., Goldman R. D. In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3692–3696. doi: 10.1073/pnas.78.6.3692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinert P. M., Idler W. W., Goldman R. D. Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4534–4538. doi: 10.1073/pnas.77.8.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steinert P. M., Idler W. W., Zimmerman S. B. Self-assembly of bovine epidermal keratin filaments in vitro. J Mol Biol. 1976 Dec 15;108(3):547–567. doi: 10.1016/s0022-2836(76)80136-2. [DOI] [PubMed] [Google Scholar]
  20. Steinert P. M. Structure of the three-chain unit of the bovine epidermal keratin filament. J Mol Biol. 1978 Jul 25;123(1):49–70. doi: 10.1016/0022-2836(78)90376-5. [DOI] [PubMed] [Google Scholar]
  21. Steinert P. M., Zimmerman S. B., Starger J. M., Goldman R. D. Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6098–6101. doi: 10.1073/pnas.75.12.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES