Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(10):3232–3235. doi: 10.1073/pnas.79.10.3232

Gap junctional communication compartments in the Drosophila wing disk.

M P Weir, C W Lo
PMCID: PMC346389  PMID: 6954475

Abstract

We have examined the gap junctional communication properties of cells in the wing imaginal disk of Drosophila, using intracellular injection of the fluorescent dye tracer Lucifer Yellow. The cell-to-cell passage of Lucifer Yellow is restricted at a boundary line that divides the wing disk into halves. We refer to each half as a "communication compartment" because there is a high level of gap junctional exchange within a compartment and much lower exchange between compartments. Comparison of the positions of the compartments with developmental fate maps suggests that cells in one communication compartment give rise to cuticular structures in the anterior half of the adult dorsal mesothorax, and cells in the other compartment contribute to posterior structures. This communication-restriction line appears to be coincident with the line between the anterior and posterior developmental compartments observed in studies of cell lineage. We propose that gap junctional communication restrictions may play a general role in generating or maintaining developmental compartments.

Full text

PDF
3232

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brower D. L., Lawrence P. A., Wilcox M. Clonal analysis of the undifferentiated wing disk of Drosophila. Dev Biol. 1981 Sep;86(2):448–455. doi: 10.1016/0012-1606(81)90203-7. [DOI] [PubMed] [Google Scholar]
  2. Bryant P. J. Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Dev Biol. 1970 Jul;22(3):389–411. doi: 10.1016/0012-1606(70)90160-0. [DOI] [PubMed] [Google Scholar]
  3. Bryant P. J. Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool. 1975 Jul;193(1):49–77. doi: 10.1002/jez.1401930106. [DOI] [PubMed] [Google Scholar]
  4. Crick F. H., Lawrence P. A. Compartments and polyclones in insect development. Science. 1975 Aug 1;189(4200):340–347. doi: 10.1126/science.806966. [DOI] [PubMed] [Google Scholar]
  5. Garcia-Bellido A., Merriam J. R. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev Biol. 1971 Jan;24(1):61–87. doi: 10.1016/0012-1606(71)90047-9. [DOI] [PubMed] [Google Scholar]
  6. Garcia-Bellido A., Ripoll P., Morata G. Developmental compartmentalisation of the wing disk of Drosophila. Nat New Biol. 1973 Oct 24;245(147):251–253. doi: 10.1038/newbio245251a0. [DOI] [PubMed] [Google Scholar]
  7. Garcia-Bellido A., Ripoll P., Morata G. Developmental compartmentalization in the dorsal mesothoracic disc of Drosophila. Dev Biol. 1976 Jan;48(1):132–147. doi: 10.1016/0012-1606(76)90052-x. [DOI] [PubMed] [Google Scholar]
  8. García-Bellido A. Genetic control of wing disc development in Drosophila. Ciba Found Symp. 1975;0(29):161–182. doi: 10.1002/9780470720110.ch8. [DOI] [PubMed] [Google Scholar]
  9. Kauffman S. A., Shymko R. M., Trabert K. Control of sequential compartment formation in Drosophila. Science. 1978 Jan 20;199(4326):259–270. doi: 10.1126/science.413193. [DOI] [PubMed] [Google Scholar]
  10. Lawrence P. A. A clonal analysis of segment development in Oncopeltus (Hemiptera). J Embryol Exp Morphol. 1973 Dec;30(3):681–699. [PubMed] [Google Scholar]
  11. Lawrence P. A., Morata G. The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol. 1977 Mar;56(1):40–51. doi: 10.1016/0012-1606(77)90153-1. [DOI] [PubMed] [Google Scholar]
  12. Lo C. W., Gilula N. B. Gap junctional communication in the post-implantation mouse embryo. Cell. 1979 Oct;18(2):411–422. doi: 10.1016/0092-8674(79)90060-6. [DOI] [PubMed] [Google Scholar]
  13. Lo C. W., Gilula N. B. Gap junctional communication in the preimplantation mouse embryo. Cell. 1979 Oct;18(2):399–409. doi: 10.1016/0092-8674(79)90059-x. [DOI] [PubMed] [Google Scholar]
  14. Schubiger G. Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Dev Biol. 1971 Oct;26(2):277–295. doi: 10.1016/0012-1606(71)90127-8. [DOI] [PubMed] [Google Scholar]
  15. Simpson I., Rose B., Loewenstein W. R. Size limit of molecules permeating the junctional membrane channels. Science. 1977 Jan 21;195(4275):294–296. doi: 10.1126/science.831276. [DOI] [PubMed] [Google Scholar]
  16. Stewart W. W. Lucifer dyes--highly fluorescent dyes for biological tracing. Nature. 1981 Jul 2;292(5818):17–21. doi: 10.1038/292017a0. [DOI] [PubMed] [Google Scholar]
  17. Wilcox M., Brower D. L., Smith R. J. A position-specific cell surface antigen in the drosophila wing imaginal disc. Cell. 1981 Jul;25(1):159–164. doi: 10.1016/0092-8674(81)90240-3. [DOI] [PubMed] [Google Scholar]
  18. Wolpert L. Positional information and pattern formation. Curr Top Dev Biol. 1971;6(6):183–224. doi: 10.1016/s0070-2153(08)60641-9. [DOI] [PubMed] [Google Scholar]
  19. de Laat S. W., Tertoolen L. G., Dorresteijn A. W., van den Biggelaar J. A. Intercellular communication patterns are involved in cell determination in early molluscan development. Nature. 1980 Oct 9;287(5782):546–548. doi: 10.1038/287546a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES