Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(10):3290–3294. doi: 10.1073/pnas.79.10.3290

Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies.

P Vanguri, C L Koski, B Silverman, M L Shin
PMCID: PMC346401  PMID: 6954480

Abstract

Many pathological conditions of the central nervous system involve damage to and removal of myelin membrane. Very little is known about initiation of this membrane damage and the mechanisms of disposal of the damaged tissue. We are interested in the interaction between complement (the components of complement are designated C1, C2, C3, etc.) and myelin membranes and the possible role of complement in amplifying myelin damage and in the disposal of damaged myelin in vivo, because activation of complement generates both membrane-attack complexes and opsonin(s). In this study, we found that isolated rat or human myelin consumes complement in the absence of specific antibodies. Activation of complement was demonstrated by showing C3 cleavage in fresh serum incubated with myelin. Incubation of central nervous system myelin with C2-deficient serum produced no C3 consumption and only minor factor B conversion, thus excluding the alternative pathway of activation. Involvement of the classical pathway was shown directly by the C1 fixation and transfer assay. Myelin incubated with C2-deficient serum or with purified C1 and then washed contained C1 activity that could lyse sheep erythrocytes sensitized with anti-Forssman IgM antibody and carrying C4, together with C2 and C3-C9. Membranes in brain tissues other than myelin (heavy membrane fraction obtained on sucrose density gradient centrifugation) were unable to activate C1.

Full text

PDF
3290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving C. R., Richards R. L., Guirguis A. A. Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes. J Immunol. 1977 Jan;118(1):342–347. [PubMed] [Google Scholar]
  2. Carson J. H., Barbarese E., Braun P. E., McPherson T. A. Components in multiple sclerosis cerebrospinal fluid that are detected by radioimmunoassay for myelin basic protein. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1976–1978. doi: 10.1073/pnas.75.4.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S. R., Brooks B. R., Herndon R. M., McKhann G. M. A diagnostic index of active demyelination: myelin basic protein in cerebrospinal fluid. Ann Neurol. 1980 Jul;8(1):25–31. doi: 10.1002/ana.410080104. [DOI] [PubMed] [Google Scholar]
  4. Cooper N. R., Jensen F. C., Welsh R. M., Jr, Oldstone M. B. Lysis of RNA tumor viruses by human serum: direct antibody-independent triggering of the classical complement pathway. J Exp Med. 1976 Oct 1;144(4):970–984. doi: 10.1084/jem.144.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cooper N. R., Morrison D. C. Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol. 1978 Jun;120(6):1862–1868. [PubMed] [Google Scholar]
  6. Dodds A. W., Sim R. B., Porter R. R., Kerr M. A. Activation of the first component of human complement (C1) by antibody-antigen aggregates. Biochem J. 1978 Nov 1;175(2):383–390. doi: 10.1042/bj1750383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fearon D. T., Kaneko I., Thomson G. G. Membrane distribution and adsorptive endocytosis by C3b receptors on human polymorphonuclear leukocytes. J Exp Med. 1981 Jun 1;153(6):1615–1628. doi: 10.1084/jem.153.6.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gigli I., Porter R. R., Sim R. B. The unactivated form of the first component of human complement, C1. Biochem J. 1976 Sep 1;157(3):541–548. doi: 10.1042/bj1570541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldlust M. B., Shin H. S., Hammer C. H., Mayer M. M. Studies of complement complex C5b,6 eluted from--EAC-6: reaction of C5b,6 with EAC4b,3b and evidence on the role of C2a and C3b in the activation of C5. J Immunol. 1974 Sep;113(3):998–1007. [PubMed] [Google Scholar]
  10. Hong K., Kinoshita T., Inoue K. Simple methods for preparing EAC1,4b,2a,3b and EAC4b,3b with human or guinea pig complement components using an anticomplementary agent, K-76 monocarboxylic acid. J Immunol. 1981 Jul;127(1):109–114. [PubMed] [Google Scholar]
  11. Hong K., Kinoshita T., Kitajima H., Inoue K. Inhibitory effect of K-76 monocarboxylic acid, an anticomplementary agent, on the C3b inactivator system. J Immunol. 1981 Jul;127(1):104–108. [PubMed] [Google Scholar]
  12. Hong K., Kinoshita T., Miyazaki W., Izawa T., Inoue K. An anticomplementary agent, K-76 monocarboxylic acid: its site and mechanism of inhibition of the complement activation cascade. J Immunol. 1979 Jun;122(6):2418–2423. [PubMed] [Google Scholar]
  13. Kaplan M. H., Volanakis J. E. Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J Immunol. 1974 Jun;112(6):2135–2147. [PubMed] [Google Scholar]
  14. LAURELL C. B. ANTIGEN-ANTIBODY CROSSED ELECTROPHORESIS. Anal Biochem. 1965 Feb;10:358–361. doi: 10.1016/0003-2697(65)90278-2. [DOI] [PubMed] [Google Scholar]
  15. Lisak R. P., Zwiman B., Norman M. Antimyelin antibodies in neurologic diseases. Immunofluorescent demonstration. Arch Neurol. 1975 Mar;32(3):163–167. doi: 10.1001/archneur.1975.00490450043005. [DOI] [PubMed] [Google Scholar]
  16. Lumsden C. E. The immunogenesis of the multiple sclerosis plaque. Brain Res. 1971 May 21;28(3):365–390. doi: 10.1016/0006-8993(71)90052-7. [DOI] [PubMed] [Google Scholar]
  17. Mayer M. M. Complement, past and present. Harvey Lect. 1978;72:139–193. [PubMed] [Google Scholar]
  18. McKhann G. M. A cellular approach to neurological disease. Johns Hopkins Med J. 1978 Aug;143(2):48–57. [PubMed] [Google Scholar]
  19. Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1975;44:697–724. doi: 10.1146/annurev.bi.44.070175.003405. [DOI] [PubMed] [Google Scholar]
  20. Müller-Eberhard H. J., Polley M. J., Calcott M. A. Formation and functional significance of a molecular complex derived from the second and the fourth component of human complement. J Exp Med. 1967 Feb 1;125(2):359–380. doi: 10.1084/jem.125.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Norton W. T. Isolation of myelin from nerve tissue. Methods Enzymol. 1974;31:435–444. doi: 10.1016/0076-6879(74)31049-x. [DOI] [PubMed] [Google Scholar]
  22. Shin H. S., Pickering R. J., Mayer M. M. The fifth component of the guinea pig complement system. 3. Dissociation and transfer of C5b, and the probable site of C5b fixation. J Immunol. 1971 Feb;106(2):480–493. [PubMed] [Google Scholar]
  23. Shin H. S., Smith M. R., Winkelstein J., Nicholson A. Heat labile opsonin system to pneumococcus. Birth Defects Orig Artic Ser. 1975;11(1):563–566. [PubMed] [Google Scholar]
  24. Shin M. L., Paznekas W. A., Mayer M. M. On the mechanism of membrane damage by complement: the effect of length and unsaturation of the acyl chains in liposomal bilayers and the effect of cholesterol concentration in sheep erythrocyte and liposomal membranes. J Immunol. 1978 Jun;120(6):1996–2002. [PubMed] [Google Scholar]
  25. Siegel J., Rent R., Gewurz H. Interactions of C-reactive protein with the complement system. I. Protamine-induced consumption of complement in acute phase sera. J Exp Med. 1974 Sep 1;140(3):631–647. doi: 10.1084/jem.140.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stefan J., Procházka M., Voltnerová M. Studies of immunologic reactions after brain injury. I. Antibodies against brain tissue lipids after experimental injury of the brain in rabbits. Int Surg. 1971 May;55(5):316–321. [PubMed] [Google Scholar]
  27. Stroud R. M., Austen K. F., Mayer M. M. Catalysis of C'2 fixation by C'la. Reaction kinetics, competitive inhibition by TAMe, and transferase hypothesis of the enzymatic action of C'la on C'2, one of its natural substrates. Immunochemistry. 1965 Sep;2(3):219–234. [PubMed] [Google Scholar]
  28. Whitaker J. N., Lisak R. P., Bashir R. M., Fitch O. H., Seyer J. M., Krance R., Lawrence J. A., Ch'ien L. T., O'Sullivan P. Immunoreactive myelin basic protein in the cerebrospinal fluid in neurological disorders. Ann Neurol. 1980 Jan;7(1):58–64. doi: 10.1002/ana.410070111. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES