Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1982 May;79(10):3330–3334. doi: 10.1073/pnas.79.10.3330

Modulation of T-lymphocyte differentiation antigens: potential relevance for multiple sclerosis.

J Antel, J J Oger, S Jackevicius, H H Kuo, B G Arnason
PMCID: PMC346409  PMID: 6212930

Abstract

Effects of the anti-T-cell monoclonal antibodies OKT3, OKT5, and OKT8 on T-cell surface properties and cell functions were evaluated. Incubation of mononuclear cells isolated from peripheral blood for 48 hr with each monoclonal antibody in the absence of complement resulted in modulation of their respective surface antigens; i.e., the number of cells detected by immunofluorescence as positive for the T3, T5, and T8 surface antigens was reduced. T3, T5, and T8 antigens modulated independently. A radiolabeled second antibody technique confirmed modulation by OKT3 and OKT8 and indicated that T-cell differentiation antigens can regenerate in culture. Incubation of mononuclear cells with OKT3 increased the number of sheep erythrocyte-binding lymphocytes (E+-rosetting cells) and markedly increased the number of avidly E+-rosetting cells. Incubation with OKT8 reduced the number of E+- and of avidly E+-rosetting cells. OKT3 induced both mitogenic reactivity and suppressor cell activity; cells modulated by OKT8 exhibited reduced mitogenic reactivity and reduced suppressor cell function. The decreases in total T cells, in avid T cells, in suppressor cell number, and in suppressor cell function that follow modulation by OKT8 mimic changes observed in multiple sclerosis patients.

Full text

PDF
3330

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antel J. P., Arnason B. G., Medof M. E. Suppressor cell function in multiple sclerosis: correlation with clinical disease activity. Ann Neurol. 1979 Apr;5(4):338–342. doi: 10.1002/ana.410050406. [DOI] [PubMed] [Google Scholar]
  2. Bach M. A., Phan-Dinh-Tuy F., Tournier E., Chatenoud L., Bach J. F., Martin C., Degos J. D. Deficit of suppressor T cells in active multiple sclerosis. Lancet. 1980 Dec 6;2(8206):1221–1223. doi: 10.1016/s0140-6736(80)92480-0. [DOI] [PubMed] [Google Scholar]
  3. Dore-Duffy P., Zurier R. B. E-rosette formation in normals and patients with multiple sclerosis: effect of prostaglandin and aspirin. Clin Immunol Immunopathol. 1979 Jul;13(3):261–268. doi: 10.1016/0090-1229(79)90071-0. [DOI] [PubMed] [Google Scholar]
  4. Evans R. L., Wall D. W., Platsoucas C. D., Siegal F. P., Fikrig S. M., Testa C. M., Good R. A. Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to TH2 antigen. Proc Natl Acad Sci U S A. 1981 Jan;78(1):544–548. doi: 10.1073/pnas.78.1.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gonzalez R. L., Dau P. C., Spitler L. E. Altered regulation of mitogen responsiveness by suppressor cells in multiple sclerosis. Clin Exp Immunol. 1979 Apr;36(1):78–84. [PMC free article] [PubMed] [Google Scholar]
  6. Gordon J., Robinson D. S., Stevenson G. T. Antigenic modulation of lymphocytic surface immunoglobulin yielding resistance to complement-mediated lysis. I. Characterization with syngeneic and xenogeneic complements. Immunology. 1981 Jan;42(1):7–12. [PMC free article] [PubMed] [Google Scholar]
  7. Gordon J., Stevenson G. T. Antigenic modulation of lymphocytic surface immunoglobulin yielding resistance to complement-mediated lysis. II. Relationship to redistribution of the antigen. Immunology. 1981 Jan;42(1):13–17. [PMC free article] [PubMed] [Google Scholar]
  8. Huddlestone J. R., Oldstone M. B. T suppressor (TG) lymphocytes fluctuate in parallel with changes in the clinical course of patients with multiple sclerosis. J Immunol. 1979 Oct;123(4):1615–1618. [PubMed] [Google Scholar]
  9. Kamoun M., Martin P. J., Hansen J. A., Brown M. A., Siadak A. W., Nowinski R. C. Identification of a human T lymphocyte surface protein associated with the E-rosette receptor. J Exp Med. 1981 Jan 1;153(1):207–212. doi: 10.1084/jem.153.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lisak R. P., Levinson A. I., Zweiman B., Abdou N. I. T and B lymphocytes in multiple sclerosis. Clin Exp Immunol. 1975 Oct;22(1):30–34. [PMC free article] [PubMed] [Google Scholar]
  11. Lisak R. P., Mercado F., Zweiman B. Cold reactive antilymphocyte antibodies in neurological diseases. J Neurol Neurosurg Psychiatry. 1979 Nov;42(11):1054–1057. doi: 10.1136/jnnp.42.11.1054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMillan S. A., Haire M., Middleton D. Antibodies to lymphocytes and smooth muscle in the sera of patients with multiple sclerosis. Clin Immunol Immunopathol. 1980 Jul;16(3):374–385. doi: 10.1016/0090-1229(80)90143-9. [DOI] [PubMed] [Google Scholar]
  14. Morimoto C., Reinherz E. L., Abe T., Homma M., Schlossman S. F. Characteristics of anti-T-cell antibodies in systemic lupus erythematosus: evidence for selective reactivity with normal suppressor cells defined by monoclonal antibodies. Clin Immunol Immunopathol. 1980 Aug;16(4):474–484. doi: 10.1016/0090-1229(80)90189-0. [DOI] [PubMed] [Google Scholar]
  15. Neighbour P. A., Bloom B. R. Absence of virus-induced lymphocyte suppression and interferon production in multiple sclerosis. Proc Natl Acad Sci U S A. 1979 Jan;76(1):476–480. doi: 10.1073/pnas.76.1.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nyland H., Naess A. T lymphocytes in peripheral blood from patients with neurological diseases. Acta Neurol Scand. 1978 Nov;58(5):272–279. doi: 10.1111/j.1600-0404.1978.tb02887.x. [DOI] [PubMed] [Google Scholar]
  17. Oger J. F., Arnason B. G., Wray S. H., Kistler J. P. A study of B and T cells in multiple sclerosis. Neurology. 1975 May;25(5):444–447. doi: 10.1212/wnl.25.5.444. [DOI] [PubMed] [Google Scholar]
  18. Oger J., Szuchet S., Antel J., Arnason B. G. A monoclonal antibody against human T suppressor lymphocytes binds specifically to the surface of cultured oligodendrocytes. Nature. 1982 Jan 7;295(5844):66–68. doi: 10.1038/295066a0. [DOI] [PubMed] [Google Scholar]
  19. Oldstone M. B., Tishon A. Immunologic injury in measles virus infection. IV. Antigens modulation and abrogation oflymphocyte lysis of virus-infected cells. Clin Immunol Immunopathol. 1978 Jan;9(1):55–62. doi: 10.1016/0090-1229(78)90120-4. [DOI] [PubMed] [Google Scholar]
  20. Platsoucas C. D., Good R. A. Inhibition of specific cell-mediated cytotoxicity by monoclonal antibodies to human T cell antigens. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4500–4504. doi: 10.1073/pnas.78.7.4500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reddy M. M., Goh K. O. B and T lymphocytes in man. III. B, t, and "null" lymphocytes in multiple sclerosis. Neurology. 1976 Oct;26(10):997–999. doi: 10.1212/wnl.26.10.997. [DOI] [PubMed] [Google Scholar]
  22. Reinherz E. L., Hussey R. E., Fitzgerald K., Snow P., Terhorst C., Schlossman S. F. Antibody directed at a surface structure inhibits cytolytic but not suppressor function of human T lymphocytes. Nature. 1981 Nov 12;294(5837):168–170. doi: 10.1038/294168a0. [DOI] [PubMed] [Google Scholar]
  23. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reinherz E. L., Weiner H. L., Hauser S. L., Cohen J. A., Distaso J. A., Schlossman S. F. Loss of suppressor T cells in active multiple sclerosis. Analysis with monoclonal antibodies. N Engl J Med. 1980 Jul 17;303(3):125–129. doi: 10.1056/NEJM198007173030303. [DOI] [PubMed] [Google Scholar]
  25. Sagar H. J., Allonby I. D. Lymphocyte subpopulations in multiple sclerosis: serial studies and clinical correlations. J Neurol Sci. 1979 Sep;43(1):133–148. doi: 10.1016/0022-510x(79)90078-9. [DOI] [PubMed] [Google Scholar]
  26. Sakane T., Steinberg A. D., Reeves J. P., Green I. Studies of immune functions of patients with systemic lupus erythematosus. T-cell subsets and antibodies to T-cell subsets. J Clin Invest. 1979 Nov;64(5):1260–1269. doi: 10.1172/JCI109581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strelkauskas A. J., Callery R. T., McDowell J., Borel Y., Schlossman S. F. Direct evidence for loss of human suppressor cells during active autoimmune disease. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5150–5154. doi: 10.1073/pnas.75.10.5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Utermohlen V., Farmer J., Kornbluth J., Kornstein M. The relationship between direct migration inhibition with measles antigen and E rosettes in normals and patients with multiple sclerosis. Clin Immunol Immunopathol. 1978 Jan;9(1):63–66. doi: 10.1016/0090-1229(78)90121-6. [DOI] [PubMed] [Google Scholar]
  29. Van Wauwe J. P., De Mey J. R., Goossens J. G. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol. 1980 Jun;124(6):2708–2713. [PubMed] [Google Scholar]
  30. Weiner H. L., Schocket A. L. Lymphocytes in multiple sclerosis: correlation with CSF immunoglobulins and cold-reactive lymphocytotoxic antibodies. Neurology. 1979 Nov;29(11):1504–1508. doi: 10.1212/wnl.29.11.1504. [DOI] [PubMed] [Google Scholar]
  31. Yu D. T. Human lymphocyte subpopulations: giant SRBC rosettes. J Immunol. 1976 Jun;116(6):1719–1724. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES